Study of microstructure and thermal properties of as-cast high carbon and high chromium tool steel

  • Dragan Miroslav Manasijevic University of Belgrade, Technical Faculty, Bor, Serbia
  • Žarko Radović University of Montenegro, Faculty of Metallurgy and Technology, Cetinjski put, bb, 81000, Podgorica, Montenegro
  • Nada Štrbac University of Belgrade, Technical faculty in Bor, VJ12, 19210 Bor, Serbia
  • Ljubiša Balanović University of Belgrade, Technical faculty in Bor, VJ12, 19210 Bor, Serbia
  • Uroš Stamenković University of Belgrade, Technical faculty in Bor, VJ12, 19210 Bor, Serbia
  • Milan Gorgievski University of Belgrade, Technical faculty in Bor, VJ12, 19210 Bor, Serbia
  • Duško Minić University of Priština, Faculty of Technical Science, Kneza Miloša 7, 4000 Kosovska Mitrovica, Serbia
  • Milena Premović University of Priština, Faculty of Technical Science, Kneza Miloša 7, 4000 Kosovska Mitrovica, Serbia
  • Tamara Holjevac Grgurić University of Zagreb, Faculty of Metallurgy, Aleja narodnih heroja 3, Sisak, Croatia
  • Nebojša Tadić University of Montenegro, Faculty of Metallurgy and Technology, Cetinjski put, bb, 81000, Podgorica, Montenegro
Keywords: high alloy tool steel, scanning electron microscopy, thermal conductivity, differential scanning calorimetry, as-cast

Abstract

This work aims to investigate the microstructural and thermal properties of as-cast high carbon and high chromium cold work tool steel. The microstructure was investigated by using scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) and X-ray diffraction (XRD) method. It was determined that at room temperature the microstructure of the investigated tool steel includes a lamellar network of M7C3 carbide precipitates along grain boundaries of ferrite grains in the base. Thermal diffusivity, specific heat capacity and thermal conductivity of the investigated steel alloy were determined in the temperature interval from 25 to 400 °C by using the laser-flash method. Thermal conductivity increases from 24.9 at 25 °C to 26.9 W/m·K at 400 °C. Phase transition temperatures in the temperature region from room temperature to 1250 °C were experimentally determined using differential scanning calorimetry (DSC). One endothermic effect in the temperature interval from 803 to 820 °C, corresponding to the ferrite/austenite phase transformation, was detected during sample heating. Experimental results were compared with the results of phase equilibria calculations obtained from the ThermoCalc software and TCFE6 database.

References

G. Roberts, G. Krauss, R. Kennedy: Tool Steels, Materials Park: ASM International, 1998.

J. Valloton, D. M. Herlach, H. Henein, D. Sediako: Metall Mat Trans A, 48 (10) (2017) 4735-4743.

Crossreff

T. Večko Pirtovšek, G. Kugler, M. Terčelj: Mater Charact, 83 (2013) 97-108.

Crossreff

T. Packiaraj Rajendran, N. Rajesh Jesudoss Hynes, T. Christopher: J Braz Soc Mech Sci Eng, 40 (2018) Article: 316.

Crossreff

T. Amine, J W. Newkirk, H. El-Din, F. El-Sheikh, F. Liou: Int J Adv Manuf Technol, 73 (9-12) (2014) 1427-1435.

Crossreff

D. Bombac, M. Fazarinc, A. Saha Podder, G. Kugler: J Mater Eng Perform, 22 (3) (2013) 742-747.

Crossreff

H. Torkamani, Sh. Raygan, J. Rassizadehghani: Mater Design, 54 (2014) 1049-1055.

Crossreff

J. O. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman: Calphad, 26 (2) (2002) 273-312.

Crossreff

D. Aišman, H. Jirkova, B. Mašek: J Alloy Compd, 536 (2012) S204-S207.

Crossreff

M. N. Mohammed, M. Z. Omar, J. Syarif, Z. Sajuri, M. S. Salleh, K. S. Alhawari, The Scientific World Journal, Article ID 828926, (2013), 7 pages.

S. Kahrobaee, M. Kashefi: J Mater Eng Perform, 24 (3) (2015) 1192-1198.

Crossreff

E. C. Bain: Alloying Elements in Steels, ASM, Cleveland, Ohio, USA, 1939. LINK

G. Ramesh, R. Rahul, M. Pradeep, P. Sreehari, S. Ramesh Kumar: Materials Today: Proceedings, 5 (2018) 2733–2737.

Crossreff

M.A. Hamidzadeh, M.Meratian, M. Mohammadi Zahrani: Mat Sci Eng A-Struct, 556 (2012) 758–766.

Crossreff

W. J. Parker, R. J. Jenkins, C. P. Butler, G. L. Abbott: J Appl Phys, 32 (9) (1961) 1679.

Crossreff

D. Manasijević, Ž. Radović, N. Štrbac, Lj. Balanović, U. Stamenković, M. Gorgievski, M. Premović, T. Holjevac Grgurić, N. Tadić: Mater Test, 60 (12) (2018) 1175-1178.

Crossreff

S. M. Shelton: Bureau of Standards Journal of Research, 12 (1934) 441.

Crossreff

M. J. Peet, H. S. Hasan, H. K. D. H. Bhadeshia: Int J Heat Mass Tran, 54 (11-12) (2011) 2602-2608.

Crossreff

R. Moravčík, M. Štefániková, R. Čička, Ľ. Čaplovič, K. Kocúrová, R. Šturm: Strojniški vestnik - Journal of Mechanical Engineering, 58 (12) (2012) 709-715.

Crossreff

Published
2019-03-31
Section
Research