Ball milled bauxite residue as a reinforcing filler in phosphate-based intumescent system

Adiat Ibironke Arogundade, Puteri Sri Melor Bt Megat Yussof, Faiz Ahmad, Aamir Hussain Bhat

Abstract


Bauxite residue (BR) is an alumina refinery waste with a global disposal problem. Of the 120 MT generated annually, only 3 MT is disposed via utilization. One of the significant challenges to sustainable utilization has been found to be the cost of processing. In this work, using ball milling, we achieved material modification of bauxite residue. Spectrometric imaging with FESEM showed the transformation from an aggregate structure to nano, platy particulates, leading to particle size homogeneity. BET analysis showed surface area was increased by 23%, while pH was reduced from 10.8 to 9.1 due to collapsing of the hydroxyl surface by the fracturing action of the ball mill. Incorporation of this into a phosphate-based fire retardant, intumescent formulation led to improved material dispersion and the formation of reinforcing heat shielding char nodules. XRD revealed the formation of ceramic metal phosphates which acted as an additional heat sink to the intumescent system, thereby reducing char oxidation and heat transfer to the substrate. Steel substrate temperature from a Bunsen burner test reduced by 33%. Therefore, ball milling can serve as a simple, low-cost processing route for the reuse of bauxite residue in intumescent composites.


Keywords


bauxite residue; ball milling; intumescent; reinforcing filler; ceramic phosphate

Full Text:

HTML/PDF

References


Y. Liu, R. Naidu: Waste Manage, 34 (2014) 2662-2673.

LINK

C. Klauber, M. Gräfe, G. Power: Hydrometallurgy, 108, (2011) 11-32.

LINK

A. I. Arogundade, P. S. M. B. Megat-Yussof, F. Ahmad, A. H. Bhat: ARPN J Eng Appl Sci, 11 (2016) 12165-12169.

LINK

J.-w. Gu, G.-c. Zhang, S.-l. Dong, Q.-y. Zhang, J. Kong: Surf Coat Technol, 201 (2007) 7835-7841.

LINK

H. Aziz, F. Ahmad, P. S. M. B. M. Yusoff, M. Zia-ul-Mustafa: MATEC Web Conf, 13 (2014) 04013.

LINK

B. Rimez, H. Rahier, M. Biesemans, S. Bourbigot, B. Van Mele: Polym Degrad Stab, 121 (2015) 321-330.

LINK

T. C. Santini: Int J Miner Process, 139 (2015) 1-10.

LINK

F. Delogu, G. Gorrasi, A. Sorrentino: Prog Mater Sci, 86 (2017) 75-126.

LINK

R. Hamzaoui, F. Muslim, S. Guessasma, A. Bennabi, J. Guillin: Powder Technol, 271 (2015) 228-237.

LINK

M. Gomez-Mares, A. Tugnoli, G. Landucci, F. Barontini, V. Cozzani: J Anal Appl Pyrolysis, 97 (2012) 99-108.

LINK

G. Marosi, A. Marton, A. Szep, I. Csontos, S. Keszei, E. Zimonyi, et al.: Polym Degrad Stab, 82 (2003) 379-385.

LINK

W. Tang, S. Zhang, J. Sun, H. Li, X. Liu, X. Gu: Thermochim Acta, 648 (2017) 1-12.

LINK

X. Yuan, S. Liu, G. Feng, Y. Liu, Y. Li, H. Lu, et al.: Korean J Chem Eng, 33 (2016) 2134-2141.

LINK

E. Leonel, E. Nassar, K. Ciuffi, M. dos Reis, P. Calefi: Cerâmica, 60 (2014) 267-272,.

LINK

S. Ullah, F. Ahmad: Polym Degrad Stab, 103 (2014) 49-62.

LINK


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Metall Mater Eng   ISSN: 2217-8961

Creative Commons License
Except where otherwise noted, the content on this site is licensed under a Creative Commons Attribution 4.0 International License.