Numerical investigation of fluid flow and heat transfer around a circular cylinder utilizing nanofluid for different thermal boundary condition in the steady regime

Rafik Bouakkaz, F. Salhi, Y. Khelili, M. Ouazzazi, K. Talbi

Abstract


In this work, steady flow-field and heat transfer through a copper–water nanofluid around a circular cylinder, under the influence of both the standard thermal boundary conditions i.e. uniform heat flux (UHF) and constant wall temperature (CWT) was investigated numerically by using a finite-volume method for Reynolds numbers of 10 to 40. Furthermore, the range of nanoparticle volume fractions (φ) considered is 0 ≤ φ ≤ 5%. The variation of the local and the average Nusselt numbers with Reynolds number, and volume fractions are presented for the range of conditions. The average Nusselt number is found to increase with increasing the nanoparticle volume fractions.


Keywords


Copper nanoparticles; heat transfer; circular cylinder; steady regime.

Full Text:

HTML/PDF

References


M. Hatami, M. Jafaryar, D. D. Ganji, M. Gorji-Bandpy: Int Commun Heat Mass Transfer, 57, 254-263.

M. Hatami, D. D. Ganji, M. Gorji-Bandpy: Case Studies in Therm Eng, 4 (2014): 53-64.

S. Sanitjai, R. J. Goldstein: Int J Heat Mass Transfer, 47 (2004) 4795-4805

R. P. Bharti, R. P. Chhabra, V. Eswaran: Heat Mass Transfer, 43 (2007) 639-648

M. Sufyan, S. Manzoor, N. A. Sheikh: Arabian J Sci Eng, 39 (2014) 8051–8063

S. B. Paramane, A. Sharma: Int J Heat Mass Transfer, 52 (2009) 3205–3216.

R. Bouakkaz, K. Talbi, Y. Khelil, F. Salhi, N. Belghar, M. Ouazizi: Thermophysics and Aeromechanics, 21(2014) 87-97.

S. B. Paramane, A. Sharma: Int J Heat Mass Transfer, 53(2010) 4672–4683.

H. C. Brinkman: J Chem Phys, 20 (1952) 571–581.

H. Chang, C. S. Jwo, C. H. Lo, T. T. Tsung, M. J. Kao, H. M. Lin: Rev Adv Mater Sci, 10 (2005) 128–132.

C. J. Ho, M. W. Chen, Z. W. Li: Int J Heat Mass Transfer, 51 (2008) 4506–4516.

M. S. Valipour, A. Z. Ghadi: Int Commun Heat Mass Transfer, 38 (2011) 1296-1304.

E. S. El-bashbeshy, T. G. Emam, M. S. Abdel-Wahed: Therm Sci, 19 (2015) 1591-1601.

Y. Khelili, A. Allali, R. Bouakkaz: Metall Mater Eng, 23 (2017) 83-97.

V. Etminan-Farooji, E. Ebrahimnia-Bajestan, H. Niazmand, S. Wongwises: Int J Heat Mass Transfer, 55 (2012) 1475–1485.

M. S. Valipour, R. Masoodi, S. Rashidi, M. Bovand, M. Mirhosseini: Therm Sci, 18 (2014) 1305-1314.

W. Yu, S. U. S. Choi: J Nanopart Res, 5 (2003) 167-71.

S. Kang, H. Choi, S. Lee: Phys Fluids, 11 (1999) 3312–3321.

S. Mittal, B. Kumar: J Fluid Mech, 476 (2003) 303–334.

J.C. Padrino, D. D. Joseph: J Fluid Mech, 557 (2006) 191–223.

D. Stojkovic, M. Breuer, F. Durst: Phys Fluids, 14 (2002) 3160-3178.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Metall Mater Eng   ISSN: 2217-8961

Creative Commons License
Except where otherwise noted, the content on this site is licensed under a Creative Commons Attribution 4.0 International License.