Numerical investigation of fluid flow and heat transfer around a circular cylinder utilizing nanofluid for different thermal boundary condition in the steady regime

  • Rafik Bouakkaz
  • F. Salhi Département de Génie Mécanique, université Mouloud Mammeri Tizi ouzou
  • Y. Khelili Department of Mechanical Engineering, University Saad Dahlab, Blida 1
  • M. Ouazzazi Département de Génie Mécanique, université Constantine 1, Constantine
  • K. Talbi Département de Génie Mécanique, université Constantine 1, Constantine
Keywords: Copper nanoparticles, heat transfer, circular cylinder, steady regime.

Abstract

In this work, steady flow-field and heat transfer through a copper–water nanofluid around a circular cylinder, under the influence of both the standard thermal boundary conditions i.e. uniform heat flux (UHF) and constant wall temperature (CWT) was investigated numerically by using a finite-volume method for Reynolds numbers of 10 to 40. Furthermore, the range of nanoparticle volume fractions (φ) considered is 0 ≤ φ ≤ 5%. The variation of the local and the average Nusselt numbers with Reynolds number, and volume fractions are presented for the range of conditions. The average Nusselt number is found to increase with increasing the nanoparticle volume fractions.

References

M. Hatami, M. Jafaryar, D. D. Ganji, M. Gorji-Bandpy: Int Commun Heat Mass Transfer, 57, 254-263.

M. Hatami, D. D. Ganji, M. Gorji-Bandpy: Case Studies in Therm Eng, 4 (2014): 53-64.

S. Sanitjai, R. J. Goldstein: Int J Heat Mass Transfer, 47 (2004) 4795-4805

R. P. Bharti, R. P. Chhabra, V. Eswaran: Heat Mass Transfer, 43 (2007) 639-648

M. Sufyan, S. Manzoor, N. A. Sheikh: Arabian J Sci Eng, 39 (2014) 8051–8063

S. B. Paramane, A. Sharma: Int J Heat Mass Transfer, 52 (2009) 3205–3216.

R. Bouakkaz, K. Talbi, Y. Khelil, F. Salhi, N. Belghar, M. Ouazizi: Thermophysics and Aeromechanics, 21(2014) 87-97.

S. B. Paramane, A. Sharma: Int J Heat Mass Transfer, 53(2010) 4672–4683.

H. C. Brinkman: J Chem Phys, 20 (1952) 571–581.

H. Chang, C. S. Jwo, C. H. Lo, T. T. Tsung, M. J. Kao, H. M. Lin: Rev Adv Mater Sci, 10 (2005) 128–132.

C. J. Ho, M. W. Chen, Z. W. Li: Int J Heat Mass Transfer, 51 (2008) 4506–4516.

M. S. Valipour, A. Z. Ghadi: Int Commun Heat Mass Transfer, 38 (2011) 1296-1304.

E. S. El-bashbeshy, T. G. Emam, M. S. Abdel-Wahed: Therm Sci, 19 (2015) 1591-1601.

Y. Khelili, A. Allali, R. Bouakkaz: Metall Mater Eng, 23 (2017) 83-97.

V. Etminan-Farooji, E. Ebrahimnia-Bajestan, H. Niazmand, S. Wongwises: Int J Heat Mass Transfer, 55 (2012) 1475–1485.

M. S. Valipour, R. Masoodi, S. Rashidi, M. Bovand, M. Mirhosseini: Therm Sci, 18 (2014) 1305-1314.

W. Yu, S. U. S. Choi: J Nanopart Res, 5 (2003) 167-71.

S. Kang, H. Choi, S. Lee: Phys Fluids, 11 (1999) 3312–3321.

S. Mittal, B. Kumar: J Fluid Mech, 476 (2003) 303–334.

J.C. Padrino, D. D. Joseph: J Fluid Mech, 557 (2006) 191–223.

D. Stojkovic, M. Breuer, F. Durst: Phys Fluids, 14 (2002) 3160-3178.

Published
2017-06-30
Section
Articles - archived