The influence of chemical composition on microstructure, hardness and electrical conductivity of Ag-Bi-In alloys at 100 °C

Authors

  • Vladan Ćosović University of Belgrade, Institute of Chemistry, Technology and Metallurgy
  • Duško Minić University of Priština, Faculty of Technical Science, Kos. Mitrovica, Serbia
  • Milena Premović University of Priština, Faculty of Technical Science, Kos. Mitrovica, Serbia
  • Dragan Manasijević University of Belgrade, Technical Faculty, Bor, Serbia
  • Aleksandar Djordjević University of Priština, Faculty of Technical Science, Kos. Mitrovica, Serbia
  • Dušan Milisavljević University of Priština, Faculty of Technical Science, Kos. Mitrovica, Serbia
  • Aleksandar Marković University of Priština, Faculty of Technical Science, Kos. Mitrovica, Serbia

DOI:

https://doi.org/10.30544/265

Keywords:

Ag-Bi-In system, thermodynamic assessment, microstructural analysis, hardness, electrical conductivity

Abstract

Considering possible applications and scarceness of literature data, Ag-Bi-In system was investigated in terms of microstructure, mechanical and electrical properties of ternary alloys from an isothermal section at 100oC. Based on the experimentally obtained results hardness and electrical conductivity of all ternary alloys from the ternary Ag-Bi-In system at 100oC were predicted. In addition, the selected isothermal section was further thermodynamically assessed and experimentally studied using scanning electron microscopy (SEM) with energy dispersive spectrometry (EDS), X-ray powder diffraction (XRD) analysis and light optical microscopy (LOM). Phase transition temperatures of alloys with overall compositions along vertical sections x(Ag)=0.5 as well as liquidus temperatures were experimentally determined by DTA. The experimentally obtained results were compared with literature data and with the results of thermodynamic calculation of phase equilibria based on CALPHAD method and corrected data for Ag-In binary system. Calculated liquidus projection, invariant equilibria and phase diagram of the Ag-Bi-In ternary system are presented as well.

References

A. Kroupa, A.T. Dinsdale, A. Watson, J. VÅ™eÅ¡tál, J. Vızdal, A. Zemanová: JOM-US, 59(7) (2007) 20-25.

A. Dinsdale, A. Kroupa, A. Watson, J. VÅ™eÅ¡tál, A. Zemanová, P. Brož, Handbook of high-temperature lead-free solders, vol.1: Atlas of phase diagrams, COST office (2012).

D. Soares, C. Vilarinho, J. Barbosa, F. Samuel, L. Trigo, P. Bre: J. Min. Metall. Sect. B-Metall., 43 (2B) (2007) 131-139.

J. SopouÅ¡ek, J. VÅ™eÅ¡tál, A. Zemanová, J. BurÅ¡ik: J. Min. Metall. Sect. B-Metall., 48(3B) (2012) 419-425.

A.T. Wu, K.H. Sun: J. Electron. Mater., 38(12) (2009) 2780-2785.

A. Sabbar, A. Zrineh, J. P. Dubes, M. Gambino, J. P. Bros, G. Borzone: Thermochim. Acta, 395 (2003) 47-58.

V. Vassiliev, M. Alaoui-Elbelghiti, A. Zrineh, M. Gambino, J.P. Bros: J. Alloy. Compd., 265 (1-2) (1998) 160-169.

Z. Li, Z. Cao, S. Knott, A. Mikula, Y. Du, Z. Qiao: Calphad, 32(1) (2008) 152-163.

U.R. Kattner, W.J. Boettinger: J. Electron. Mater., 23(7) (1994) 603-610.

W. Chen, L. Zhang, Y. Du: Calphad, 52 (2016) 159-168.

A. Milosavljević, D. Živković, Ž. Kamberović: Metalurgija-J. Metall., 14(3) (2008) 161-167.

N. Moelans, K. C. Hari Kumar, P. Wollants: J. Alloy. Compd., 360(1-2) (2003) 98-106.

V.T. Witusiewicz, U. Hecht, B. Böttger, S. Rex: J. Alloy. Compd., 428(1-2) (2007) 115-124.

X.J. Liu, T. Yamaki, I. Ohnuma, R. Kainuma, K. Ishida: Mater. Trans., 45(3) (2004) 637-645.

K. Kameda, K. Yamaguchi: J. Jpn. Inst. Met., 55 (1991) 536-544.

H.J. Snyder: T. Metall. Soc. Aime, 239(9) (1967) 1385-1391.

T. Satow, O. Uemura, S. Yamakwa: Trans. Jpn. Inst. Met., 15 (1974) 253-255.

H. Ohtani, I. Satou, M. Miyashita K. Ishida: Mater. Trans., 42 (2001) 722-731.

E. Zoro, C. Servant, B. Legendre: Calphad, 31 (2007) 89-94.

Y. Cui, S. Ishihara, X.J. Liu, I. Ohnuma, R. Kainuma, H. Ohtani, K. Ishida: Mater. Trans., 43 (2002) 1879-1886.

D. Boa, I. Ansara: Thermochim. Acta, 314 (1998) 79-86.

F. Weibke: A. Anorg. Chem., 222 (1935) 145-160.

E. Hellner: Z. Metallkd., 42 (1951) 17-19.

L.L. Frevel, E. Ott: J. Am. Chem. Soc., 57 (1935) 228-233.

A.N. Campbell, R. Wagemann, R.B. Ferguson: Can. J. Chem., 48 (1970) 1703-1715.

M.R. Baren, Indium Alloys and their engineering applications, ed. C.E.T. White and H. Okamoto materials Park, OH, ASM Intl. (1993).

T.M. Kornenhen, J.K. Kivilahti: J. Electron. Mater., 27 (1998) 149-155.

Z. Moser, W. Gasior, J. Pstrus, W. Zakulski, I. Ohnuma, X.J. Liu, Y. Inohana, K. Ishida: J. Electron. Mater., 30 (2001) 1120-1128.

W.P. Davey: Phil. Mag. 6 (47) (1924) 657-671.

H.W. King, T.B. Massalski: Phil. Mag., 6 (1961) 669-682.

M.E. Straumanis, S.M. Riad: T. Metall. Soc. Aime, 233 (1965) 964-967.

R. Kubiak: Z. Anorg. Allg. Chem., 431 (1977) 261-267.

J.K. Brandon, R. Brezard, W.B. Pearson, D.J.N. Tozer: Acta Crystallogr., B 33 (1977) 527-537.

http://www.webelements.com/periodicity/hardness_brinell/, Accessed 20 February 2017.

J.A. Cornell: Experiments with Mixtures, 3rd Ed., John Wiley&Sons, Inc, New York (2002)

Ž. Lazić, Design of Experiments in Chemical Engineering, Wilez-VCH Verlag GmbH&Co.KGaA, Weiheim (2004).

M. Kolarević, M. Vukićević, B. RadiĐević, M. Bjelić, V. Grković, In: Proceedings of the Seventh Triennial International Conference Heavy Machinery, (2011), p. 1-6.

http://periodictable.com/Properties/A/ElectricalConductivity.an.html, Accessed 20 February 2017.

Downloads

Published

2017-03-31

How to Cite

Ćosović, Vladan, Duško Minić, Milena Premović, Dragan Manasijević, Aleksandar Djordjević, Dušan Milisavljević, and Aleksandar Marković. 2017. “The Influence of Chemical Composition on Microstructure, Hardness and Electrical Conductivity of Ag-Bi-In Alloys at 100 °C”. Metallurgical and Materials Engineering 23 (1):65-82. https://doi.org/10.30544/265.

Issue

Section

Articles - archived