Effect of cold-rolling on mechanical properties of Haynes 25 cobalt-based superalloy
DOI:
https://doi.org/10.63278/mme.v23i1.248Keywords:
cold rolling, Haynes 25 superalloy, tensile properties, annealing, HCP phaseAbstract
Effect of cold-rolling and annealing time on the microstructure, hardness and the tensile properties of Haynes 25 superalloy at room-temperature and 760 °C were investigated in this research. Hot-rolled and solutionized alloy of Haynes 25 was subjected to cold-rolling with different amounts of reductions, i.e. 5%, 10%, 20%, 30% and 35%. After that, all cold-rolled samples were annealed at 1230 °C for a period of time from 2 to 120 min. Microstructural analysis showed that for annealing time range from 30 to 120 min, the rate of grains coarsening remained approximately stable in all cold-rolled samples. On the other hand, the hardness results showed that expected decreasing trend of hardness did not occur after annealing of the cold-rolled samples at 1230 °C; on the contrary, hardness increased moderately in the range time from 10 to 120 min. Tensile properties after annealing of the cold-rolled samples at room temperature and 760 °C decreased. Loss of the tensile properties can be related to the high annealing temperature. According to the experimental results, decreasing trend of tensile properties and increasing trend of hardness is linked to the formation of hcp phase after annealing at 1230 °C for 30 min. Even though the hcp phase is a hard phase, the interface between fcc and hcp phases provides suitable sites for crack nucleation and propagation.References
G.D. Sandrock, L. Leonard: National Aeronautics and Space Administration (NASA), 1966 August. P. Report No.: ND-3528.
J. Favre, Y. Koizumi, A. Chiba, D. Fabregue, E. Maire: Metall Mater Trans A, 44 (2013) 2819-2830.
D.L. Klastrom: J Mater Eng Perform, 2 (1993) 523-530.
C.T. Sims: JOM - J Min Met Mat S, 2 (1969) 27-42.
J. Teague, E. Cerreta, M. Stout: Metall Mater Trans A, 35A (2004) 2767.
Azom, Superalloy Haynes 25, http://www.azom.com/article.aspx?ArticleID=7788, Accessed 19 Nov 2012.
B. Lee, H. Matsumoto, A. Chiba: Mater Lett, 65 (2011) 843-846.
Y. Koizumi,S. Suzuki, K. Yamanaka,B.S. Lee, K. Sato, Y. Li, S. Kurosu,H. Matsumoto, A. Chiba: Acta Mater, 61 (2013) 1648-1661.
H.M. Tawancy, V.R. Ishwar, B. E. Lewis: J Mater Sci Lett, 5 (1986) 337-341.
K. Song, M. Aindow: Mater Sci Eng A-Struct, 479 (2008) 365-372.
H.C. Lin, S.K. Wu, T.S. Chou , H.P. Kao: Acta Metall Mater, 39 (1991) 2069-2080.
S. Kalpakjian, S.R. Schmid: Manufacturing Process for Engineering Materials, 5th Edition, Addison Wesley Longman, Inc., California, 1997, 1040.
S. Asgari, E. El-Danaf, E. Shaji E, S.R. Kalidindi, R.D. Doherty: Acta Met, 46 (1998) 5795-5806.
K. Yamanaka, M. Mori, Y. Koizumi, A. Chibaet: J Mech Behav Biomed Mater, 32 (2014) 52-61.
H. Tawancy, V. Ishwar, B. Lewis: Mater Lett, 5 (1986) 337-341.
L. Murr: Metall Trans A, 6 (1975) 505-513.
A. Rollett, F. Humphreys, G.S. Rohrer, M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd Edition, Elsevier, The United Kingdom, 2004, 215-267.
G.I. Taylor: The Mechanism of Plastic Deformation of Crystals, Royal Society, London, 1934, 362-387.
H. Fujita, S. Ueda: Acta Met, 20 (1972) 759-767.
G. Lacroix, T. Pardoen, P.J. Dacques: Acta Met, 56 (2008) 3900.
G.Z. Wang, F.Z. Xuan, S.T. Tu,Z.D. Wang: Mater Sci Eng, A527 (2010) 1529.
S. J. Lee, Y. K. Lee, A. Soon, Appl Surf Sci, 258 (2012) 9977-9981.
D.A. Porter, K.E. Easterling: Phase Transformations in Metals and Alloys, 3rd Edition, Chapman & Hall, New York, 1992.
L. Remy: Metall. Trans A, 12 (1981) 387-408.
W.H. Wang, D. Wu, S.S.A. Shah, R.S. Chen, C.S. Lou: Mater Sci Eng A, 649 (2016) 214-221.
M. Kenzevic, J.S. Carpenter, Manuel. L. Lovato, R.J. McCabe: Acta Met, 63 (2014) 162-168.
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their published articles online (e.g., in institutional repositories or on their website, social networks like ResearchGate or Academia), as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Except where otherwise noted, the content on this site is licensed under a Creative Commons Attribution 4.0 International License.