Kinetics of barite reduction from refractory barite-sulphide ore

  • Miroslav D Sokić Institute for technology of nuclear and other mineral raw materials
  • Vladislav Matković Institute for Technology of Nuclear and Other Mineral Raw Materials, 86 Franchet d′Esperey Street, Belgrade, Serbia
  • Jovica Stojanović Institute for Technology of Nuclear and Other Mineral Raw Materials, 86 Franchet d′Esperey Street, Belgrade, Serbia
  • Branislav Marković Institute for Technology of Nuclear and Other Mineral Raw Materials, 86 Franchet d′Esperey Street, Belgrade, Serbia
  • Vaso Manojlović Institute for Technology of Nuclear and Other Mineral Raw Materials, 86 Franchet d′Esperey Street, Belgrade, Serbia
Keywords: refractory sulphide–barite ore, kinetic of barite reduction

Abstract

Refractory sulphide–barite ore was reduced with carbon in order to release lead, zinc, and copper sulphide from barite-pyrite base. Mineralogical investigations showed that due to the complex structural-textural relationships of lead, copper and zinc minerals with gangue minerals, it is not possible to enrich the ore using the conventional methods of mineral processing. The influence of temperature and time was studied to optimize the conditions, and to determine the kinetics of the barite reduction. The maximum removal of barite from ore was 96.7% at 900oC after 180 min. Chemically controlled kinetic model showed the best compliance with the experimental data. An activation energy of 142 kJ/mol was found.

References

R. Vračar, L.Šaljić, M.Sokić, V.Matković, S.Radosavljević: Scand J Metall, 32 (2003) 289-295.

S.Radosavljević, R. Vračar, L.Šaljić, V.Matković, M.Sokić: J Min Metall SectA-Min 34, 1-2 (1998) 1-8.

V.Matković, S.Radosavljević, R.Vračar, M.Sokić, B.Marković, In: Proceedings of 3rd Conference of Macedonian Metallurgists Union with International Participation “Metallurgy 2000”, Ohrid, 2000, 371-376.

H.R. Watling: Hydrometallurgy, 140 (2013) 163-180.

Y. Li, N. Kawashima, J. Li, A.P. Chandra, A.R. Gerson: Adv Colloid Interfac, 197-198 (2013) 1-32.

M. Sokić, V. Matković, B. Marković, V. Manojlović, N. Štrbac, D. Živković, Ž. Kamberović: Metall Mater Eng, 22, 2 (2016) 81-89.

A. Akcil, H. Ciftci: Int J Miner Process, 71 (2003) 233-246.

T. Agacayak, A. Aras, S.Aydogan, M.Erdemoglu: Physicochem Probl Miner Process, 50, 2 (2014) 657-666.

M. Sokić, B. Marković, D. Živković: Hydrometallurgy, 95 (2009) 273-279.

M. Sokić, B. Marković, V. Matković, D. Živković, N. Štrbac, J. Stojanović: J Min Metall SectB-Metall, 48 (2) B (2012) 185-195.

M. Sokić, S. Radosavljević, B. Marković, V. Matković, N. Štrbac, Ž. Kamberović, D. Živković, Metal Mater Eng, 20 (2014) 53-60.

R.G. McDonald, D.M. Muir: Hydrometallurgy, 86 (2007) 191-205.

T.J.Harvey, W.T.Yen: Miner Eng, 11, 1 (1998) 1-21.

K. Othmer: Encyclopedia of Chemical Technology, Wiley, New York, 1991,pp. 457-479.

M. Sh. Bafghi, A. Yarahmadi, A. Ahmadi, H. Mehrjoo: Iranian Journal of Materials Science & Engineering 8, 3 (2011) 1-7.

R. Kresse, U. Baudis, P. Jager, H. Riechers, H. Wagner, J. Winkler, H. Wolf: Ullmann Encyclopedia of Industrial Chemistry, Barium and Barium compounds, http://onlinelibrary.wiley.com/doi/10.1002/143 5007.a03_325.publ2/pdf.

A. Salem, Y. Tavakkoli Osqouei: Mater Res Bull: 44 (2009) 1489–1493.

H.J. Sharp, J. Amer. Ceram. Soc., 49, 1966, 379.

Published
2016-12-31
Section
Articles - archived