Microstructural developments and mechanical properties of friction stir welding of AZ91D magnesium alloy plates

Nagabhushan Kumar Kadigithala, Vanitha C


Friction stir welding (FSW) is an efficient technique which can be used particularly for magnesium and aluminum alloys that are difficult to fusion weld. In this work AZ91D Mg alloy plates 3mm thick were friction stir welded at different process variables such as rotational speed and welding speed. The range of rotational speeds varied from 1025 to 1525 rpm, and the welding speed varied from 25 to 75 mm/min. Good quality welds were obtained under 1025 rpm of rotational speed with the welding speeds range from 25 to 75 mm/min. The microstructure of the AZ91D alloy consists of primary α-phase, eutectic α-phase and eutectic β (Mg17Al12) phase in the received condition (gravity die cast). The original dendrite grain structure completely disappeared and was transformed to fine equiaxed grains in stir zone (SZ). It was observed that there was a slight increase in hardness in SZ, because of fine recrystallized grain structure. The transverse tensile test results of weld specimens indicated constant strength irrespective of traveling speed. Fractrographic analysis of the friction stir welded specimens showed the brittle failure.


Magnesium based alloys; AZ91D Mg Alloy; Friction stir welding; Dynamic recrystallization.

Full Text:



K. L. Harikrishna, J. J. S. Dilip, K. Ramaswamy Choudary, V. V. Subba Rao, S. R. Koteswara Rao, G. D. Janaki Ram, N. Sridhar, G. Madhusudhan Reddy: Trans Indian Inst Met, 63 (2010) 807-811.

S. F. Su, H. K. Lin, J. C. Huang, N. J. Ho: Metall Mater Trans A, 33 (2002) 1461-1473.

A. Benartzy, A. Munitz, G. Kohn, B. Brining, A. Shtechman, In: Proceedings Magnesium Technology, Seattle, WA, USA: TMS, 2010, p. 295−302.

L. Liu, Welding and joining of magnesium alloys, 1st ed. Woodhead Publishing, 2010.

X. Cao, M. Jahazi, J. P. Immarigeon, W. Wallace: J Mater Process Technol, 171(2006) 188-204.

J. Marzbanrad, M. Akbari, P. Asadi, S. Safaee: Metall Mater Trans B, 45(2014) 1887-1894.

H. K. D. H. Bhadeshia, T. DebRoy: Sci Technol Weld Joining, 14 (2009) 193-196.

G. Padmanaban, V. Balasubramanian: Mater Des 30 (2009) 2647-2656.

U. F. H. R. Suhuddin, S. Mironov, Y. S. Sato, H. Kokawa, C-W. Lee: Acta Mater, 57 (2009) 5406-5418.

N. Afrin, D. L. Chen, X. Cao, M. Jahazi: Mater Sci Eng A, 472 (2008) 179-186.

G. M. Xie, Z. Y. Ma, L. Geng, R. S. Chen: Mater Sci Eng A, 471 (2007) 63-68.

K. Nakata: Weld Int, 23 (2009) 328-332.

Won-Bae Lee, Jong-Woong Kim, Yun-Mo Yeon, Seung-Boo Jung: Mater Trans, 44 (2003) 917-923.

X. Cao, M. Jahazi: Mater Des, 32.1 (2011) 1-11.

W. Xunhong, W. Kuaishe: Mater Sci Eng A, 431 (2006) 114-117.

N. Afrin, D. L. Chen, X. Cao, M. Jahazi: Mater Sci Eng A, 472 (2008) 179-186.

P. Cavaliere, P. P. De Marco: J Mater Process Technol, 184 (2007) 77-83.

B. M. Darras, M. K. Khraisheh, F. K. Abu-Farha, M. A. Omar: J Mater Process Technol, 191 (2007) 77-81.

R. Ch. Zeng, W. Dietzel, R. Zettler, C. H. E. N. Jun, K. U. Kainer: Trans Nonferrous Met Soc China, 18 (2008) s76-s80.

A. R. Rose, K. Manisekar, V. Balasubramanian: Trans Nonferrous Met Soc China, 21 (2011) 974-984.

P. Cavaliere, P. P. De Marco: Mater Charact, 58 (2007) 226-232.

F. Chai, D. Zhang, Y. Li: J Magnesium Alloys, 3 (2015) 203-209.

S. H. C. Park, Y. S. Sato, H. Kokawa: Metall Mater Trans A, 34 (2003) 987-994.

S. H. C. Park, Y. S. Sato, H. Kokawa, J Mater Sci, 38 (2003) 4379-4383.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Metall Mater Eng   ISSN: 2217-8961

Creative Commons License
Except where otherwise noted, the content on this site is licensed under a Creative Commons Attribution 4.0 International License.