Increasing Surface Hardness and Corrosion Resistance of AISI 410 Stainless Steel by Forming a Diamond-Like Carbon Thin Film

Authors

  • Agung Setyo Darmawan Mechanical Engineering Department, Universitas Muhammadiyah Surakarta, Indonesia https://orcid.org/0000-0002-7153-2376
  • Agus Yulianto Mechanical Engineering Department, Universitas Muhammadiyah Surakarta, Indonesia
  • Bambang Waluyo Febriantoko Mechanical Engineering Department, Universitas Muhammadiyah Surakarta, Indonesia
  • Bibit Sugito Mechanical Engineering Department, Universitas Muhammadiyah Surakarta, Indonesia
  • Suprapto Center for Accelerator Technology and Materials Process, National Research and Innovation Agency (BRIN), Indonesia
  • Tjipto Sujitno National Research and Innovation Agency (BRIN)Center for Accelerator Technology and Materials Process, National Research and Innovation Agency (BRIN), Indonesia
  • Turnad Lenggo Ginta Research Center for Manufacture and Industrial Process Technology, National Research and Innovation Agency (BRIN), Indonesia
  • Abdul Hamid Technology Education Department, Universiti Tun Hussein Onn Malaysia, Malaysia

DOI:

https://doi.org/10.56801/MME1048

Keywords:

AISI 410, Corrosion, Hardness, PVCD

Abstract

AISI 410 stainless steel plays an important role in many engineering fields. The annealing process of this material will increase toughness. But this process will also reduce the hardness of the material. Plasma chemical vapor deposition was carried out to increase the surface hardness and corrosion resistance of AISI 410 stainless steel. In this study, the raw material was tested for metallography, hardness, and corrosion resistance. Then an annealing process was carried out on the raw material. The annealed material was also observed for metallography, hardness, and corrosion resistance. Furthermore, on the annealed material, the plasma chemical vapor deposition process was carried out with pressure variations of 1.0, 1.2, 1.4, and 1.6 mbar. Next, the material was tested for metallography with a scanning electron microscope to measure the layer thickness. The formation of diamond-like carbon was confirmed by the Raman Spectroscopy test. Annealed followed by plasma chemical vapor deposition processed AISI 410 stainless steel also tested for hardness and corrosion. The results showed that the annealed AISI 410 stainless steel underwent a phase change from martensite and retained austenite to ferrite and pearlite. The annealed raw material experienced a decrease in hardness and corrosion rate. After the annealed material was processed by plasma chemical vapor deposition, The thickness of the surface layer increased with increasing pressure. Along with that, the hardness and corrosion resistance increased.

References

Zhang, Y., Guo, B., Li, Q., Li, X., Jian, J., Jin, Y., & Ao, J. (2021). Damage and Cracking Prediction of AISI 410 Martensitic Stainless Steel at Elevated Temperatures. Steel Research International, 92(9), 2100030. https://doi.org/10.1002/srin.202100030

Zhang, H., Wei, Z., Xie, F., & Sun, B. (2019). Assessment of the Properties of AISI 410 Martensitic Stainless Steel by an Eddy Current Method. Materials, 12(8), 1290. https://doi.org/10.3390/ma12081290

Moradi, M., Arabi, H., & Shamsborhan, M. (2020). Multi-objective optimization of high power diode laser surface hardening process of AISI 410 by means of RSM and desirability approach. Optik, 202, 163619. https://doi.org/10.1016/j.ijleo.2019.163619

Moradi, M., Arabi, H., Nasab, S. J., & Benyounis, K. Y. (2019). A comparative study of laser surface hardening of AISI 410 and 420 martensitic stainless steels by using diode laser. Optics & Laser Technology, 111, 347–357. https://doi.org/10.1016/j.optlastec.2018.10.013

Moreira, D. C., Furtado, H. C., Buarque, J. S., Cardoso, B. R., Merlin, B., & Moreira, D. D. C. (2019). Failure analysis of AISI 410 stainless-steel piston rod in spillway floodgate. Engineering Failure Analysis, 97, 506-517. https://doi.org/10.1016/j.engfailanal.2019.01.035

George, P. & Selvaraj, D. P. (2021). Cutting parameter optimization of CNC dry milling process of AISI 410 and 420 grade MSS. Materials Today: Proceedings, 42(2), 897-901. https://doi.org/10.1016/j.matpr.2020.11.759

Adinoyi, M. J., Merah, N., & Albinmousa, J. (2019). Strain-controlled fatigue and fracture of AISI 410 stainless steel. Engineering Failure Analysis, 106, 104166. https://doi.org/10.1016/j.engfailanal.2019.104166

Jahromi, S. A. J., Khajeh, A., & Mahmoudi, B. (2012). Effect of different pre-heat treatment processes on the hardness of AISI 410 martensitic stainless steels surface-treated using pulsed neodymium-doped yttrium aluminum garnet laser. Materials & Design, 34, 857–862. https://doi.org/10.1016/j.matdes.2011.08.020

Xie, J., Liang, Y., Yan, F., Zhou, J., Du, P., & Liu, W. (2023). Effect of high-pressure heat treatment on the recrystallization and recrystallization texture of CC 5005 aluminum alloy. Journal of Materials Research and Technology, 26, 2017-2027. https://doi.org/10.1016/j.jmrt.2023.08.018

Alagheband, M. & Ghanbari, M. (2023). Experimental investigation on the effect of heat treatment parameters on the mechanical and microstructural properties of an ASTM A860 WPHY 65 pipe fitting. Results in Materials, 19, 100435. https://doi.org/10.1016/j.rinma.2023.100435

Kainth, M., Singh, M., & Singh, A. (2022). Effect of filler metal combination and post weld heat treatment on pitting corrosion and impact toughness of GTA welded AISI 410 SS joints. Materials Today: Proceedings, 56(5), 3035-3041. https://doi.org/10.1016/j.matpr.2021.11.647

Jin, B., Zhang, N., Xing, B., Fan, N., Nie, S., Wang, X., Yin, S., & Zhu, X. (2023). Effect of annealing treatment on microstructural evolution and compressive behavior of Al0.5CrFeNi2.5Si0.25 high-entropy alloy. Materials Characterization, 205, 113233, https://doi.org/10.1016/j.matchar.2023.113233

Kovacı, H., Bozkurt, Y. B., Yetim, A. F., Baran, Ö., & Çelik, A. (2021). Corrosion and tribocorrosion properties of duplex surface treatments consisting of plasma nitriding and DLC coating. Tribology International, 156, 106823. https://doi.org/10.1016/j.triboint.2020.106823

Javidparvar, A. A., Mosavi, M. A., & Ramezanzadeh, B. (2023). Nickel-aluminium bronze (NiBRAl) casting alloy tribological/corrosion resistance properties improvement via deposition of a Cu-doped diamond-like carbon (DLC) thin film; optimization of sputtering magnetron process conditions. Materials Chemistry and Physics, 296, 127279. https://doi.org/10.1016/j.matchemphys.2022.127279

Polaki, S. R., Kumar, N., Krishna, N. G., Ravindran, T. R., Kamruddin, M., Dash, S., & Tyagi, A. K. (2015). Tribological properties of chemically modified diamond like carbon films in hydrogen plasma. Tribology International, 81, 2015, 283-290. https://doi.org/10.1016/j.triboint.2014.09.009

Rothammer, B., Neusser, K., Bartz, M., Wartzack, S., Schubert, A., & Marian, M. (2023). Evaluation of the wear-resistance of DLC-coated hard-on-soft pairings for biomedical applications. Wear, 523, 204728. https://doi.org/10.1016/j.wear.2023.204728

Wongpanya, P., Wongpinij, T., Photongkam, P., & Siritapetawee, J. (2022). Improvement in corrosion resistance of 316L stainless steel in simulated body fluid mixed with antiplatelet drugs by coating with Ti-doped DLC films for application in biomaterials. Corrosion Science, 208, 110611. https://doi.org/10.1016/j.corsci.2022.110611

An, K., Lee, H. N., Cho, K. H., Han, Y. J., & Kang, K. T. (2021). Two-step fabrication of thin film encapsulation using laser assisted chemical vapor deposition and laser assisted plasma enhanced chemical vapor deposition for long-lifetime organic light emitting diodes. Organic Electronics, 91, 106078. https://doi.org/10.1016/j.orgel.2021.106078

Kim, K. H., Kim, K. S., Ji, Y. J., Kang, J. E., & Yeom, G. Y. (2021). Silicon nitride deposited by laser assisted plasma enhanced chemical vapor deposition for next generation organic electronic devices. Applied Surface Science, 541, 148313. https://doi.org/10.1016/j.apsusc.2020.148313

Gier, C., Yaala, M. B., Wiseman, C., MacFoy, S., Chicoine, M., Schiettekatte, F., Hough, J., Rowan, S., Martin, I., MacKay, P., & Reid, S. (2023). Controlling the optical properties of hafnium dioxide thin films deposited with electron cyclotron resonance ion beam deposition. Thin Solid Films, 771, 30, 139781. https://doi.org/10.1016/j.tsf.2023.139781

Chen, H. C., Lu, Y. R., & Chen, S. B. (2023). Anisotropic stress mechanisms for different dielectric multi-layer films deposited by ion-beam assisted deposition on flexible substrates. Thin Solid Films, 782, 140026. https://doi.org/10.1016/j.tsf.2023.140026

Depla, D. (2023). On the role of chemisorption in the formation of the target surface compound layer during reactive magnetron sputtering. Vacuum, 217, 112391. https://doi.org/10.1016/j.vacuum.2023.112391

Ueshima, Y., Hasegawa, M., Kubota, N., Matamura, Y., Matsubara, E., Seki, K., & Hirato, T. (2023). Nanocrystalline Ag–Cu–Al Alloy thin films with densely dispersed alumina particles prepared using reactive sputtering method with Ar–O2 mixed gas. Materialia, 30, 101853. https://doi.org/10.1016/j.mtla.2023.101853

Liu, X., Xu, W., Xu, M., Hao, X., & Feng, X. (2019). Epitaxial CuO thin films prepared on MgAl2O4 (110) by RF-plasma assisted pulsed laser deposition. Vacuum, 169, 108932. https://doi.org/10.1016/j.vacuum.2019.108932

Tzeng, S. S., Fang, Y. L., Chih, Y. K., Hu, Y. G., Hsu, J. S., Wu, C. L., Wu, G. J. (2011). Surface characterization and nanomechanical properties of diamond-like carbon films synthesized by RF plasma enhanced chemical vapor deposition. Thin Solid Films, 519(15), 4870-4873. https://doi.org/10.1016/j.tsf.2011.01.044

Rothammer, B., Neusser, K., Marian, M., Bartz, M., Krauß, S., Böhm, T., Thiele, S., Merle, B., Detsch, R., & Wartzack, S. (2021). Amorphous Carbon Coatings for Total Knee Replacements—Part I: Deposition, Cytocompatibility, Chemical and Mechanical Properties. Polymers, 13, 1952. https://doi.org/10.3390/polym13121952

Wang, H., Wang, L., & Wang, X. (2021). Structure characterization and antibacterial properties of Ag-DLC films fabricated by dual-targets HiPIMS. Surf. Coat. Technol., 410, 126967. https://doi.org/10.1016/j.surfcoat.2021.126967

Jastrzębski, K., Białecki, J., Jastrzębska, A., Kaczmarek, A., Para, M., Niedzielski, P., & Bociaga, D. (2021). Induced Biological Response in Contact with Ag-and Cu-Doped Carbon Coatings for Potential Orthopedic Applications. Materials, 14(8), 1861. https://doi.org/10.3390/ma14081861

Zia, A. W., & Birkett, M. (2021). Deposition of diamond-like carbon coatings: Conventional to non-conventional approaches for emerging markets. Ceram. Int., 47(20), 28075-28085. https://doi.org/10.1016/j.ceramint.2021.07.005

Rajak, D. K., Kumar, A., Behera, A., Menezes, P. L. (2021). Diamond-Like Carbon (DLC) Coatings: Classification, Properties, and Applications. Appl. Sci., 11(10), 4445. https://doi.org/10.3390/app11104445

Scendo, M., & Staszewska-Samson, M. K. (2019). Effect of Temperature on Anti-Corrosive Properties of Diamond-Like Carbon Coating on S355 Steel. Materials, 12(10), 1659. https://doi.org/10.3390/ma12101659

Li, Z., Peng, M., Zhou, X., Shin, K., Tunmee, S., Zhang, X., Xie, C., Saitoh, H., Zheng, Y., Zhou, Z., & Tang Y. (2021). In Situ Chemical Lithiation Transforms Diamond-Like Carbon into an Ultrastrong Ion Conductor for Dendrite-Free Lithium-Metal Anodes. Adv. Mater., 33(37), 2100793. https://doi.org/10.1002/adma.202100793

Dong, H., He, S., Wang, X., Zhang, C., & Sun, D. (2020). Study on conductivity and corrosion resistance of N-doped and Cr/N co-doped DLC films on bipolar plates for PEMFC. Diam. Relat. Mater., 110, 108156. https://doi.org/10.1016/j.diamond.2020.108156

Kurt, M. Ş., Yıldırım, F., Orhan, Z., & Aydoğan, Ş. (2021). Influence of thickness of the sputtered diamond-like carbon (DLC) on electronic and dielectric parameters of the Au/DLC/n-Si heterojunction. J. Mater. Sci. Mater. Electron., 32, 25214-25224. https://doi.org/10.1007/s10854-021-06977-1

Dwivedi, N., Kumar, S., Malik, H. K., Govind, C. M. S., & Rauthan, & O. S. P. (2021). Correlation of sp3 and sp2 fraction of carbon with electrical, optical and nano-mechanical properties of argon-diluted diamond-like carbon films. Appl. Surf. Sci., 257(15), 6804-6810. https://doi.org/10.1016/j.apsusc.2011.02.134

Smietana, M., Szmidt, J., Korwin-Pawlowski, M. L., Bock, J. W., & Grabarczyk, J. (2007). Application of diamond-like carbon films in optical fibre sensors based on long-period gratings. Diam. Relat. Mater., 16(4-7), 1374-1377. https://doi.org/10.1016/j.diamond.2006.11.018

Robertson, J. (2008). Comparison of diamond-like carbon to diamond for applications. Phys. Stat. Sol. (a), 205(9), 2233-2244. https://doi.org/10.1002/pssa.200879720

Robertson, J. (2002). Diamond-like amorphous carbon. Mater. Sci. Eng. R. Rep., 37(4-6), 129-281. https://doi.org/10.1016/S0927-796X(02)00005-0

Suprapto, Sujitno, T., Andriyanti, W., & Pribadi, B. (2018). The formation of diamond like carbon on carbon steel using plasma of argon-liquified petrolium gas mixing. AIP Conf. Proc., 2014, 020022. https://doi.org/10.1063/1.5054426

Hariningsih, H., Lutiyatmi, L., & Daryanto, T. (2022). Effects of heat treatment on microstructure and hardness of D2 tools. Applied Research and Smart Technology, 3(1), 29–37. https://doi.org/10.23917/arstech.v3i1.761

Riyadi, T. W. B. (2017). Mechanical properties of Cu surface in the laminated structure of Cr-Cu coatings. Media Mesin: Majalah Teknik Mesin, 18(1), 8-14. http://dx.doi.org/10.23917/mesin.v18i1.3944

Purboputro, P. I., Hendrawan, M. A., & Hariyanto, A. (2018). Use of bamboo fiber as a brake pad lining material and the influence of its portion on hardness and durability. IOP Conference Series: Materials Science and Engineering, 403(1), 012100. https://doi.org/10.1088/1757-899X/403/1/012100

Anggono, A. D., Kholis, N., & Ngafwan, N. (2022). Structure and Mechanical Properties of Double Side Friction Stir Welded Aluminium AA6061 with the Addition of Cu Powder. Materials Science Forum, 1051, 111-118. https://doi.org/10.4028/www.scientific.net/MSF.1051.111

Darmawan, A. S., Siswanto, W. A., & Sujitno, T. (2013). Comparison of Commercially Pure Titanium Surface Hardness Improvement by Plasma Nitrocarburizing and Ion Implantation. Advanced Materials Research, 789, 347-351. https://doi.org/10.4028/www.scientific.net/AMR.789.347

Darmawan, A. S., Siswanto, W. A., Purboputro, P. I., Anggono, A. D., Masyrukan, & Hamid, A. (2019). Effect of Increasing Salinity to Corrosion Resistance of 5052 Aluminum Alloy in Artificial Seawater. Materials Science Forum, 961, 107-111. https://doi.org/10.4028/www.scientific.net/MSF.961.107

Sierra-Soraluce, A., Li, G., Santofimia, M. J., Molina-Aldareguia, J. M., Smith, A., Muratori, M., & Sabirov, I. (2023). Effect of microstructure on tensile properties of quenched and partitioned martensitic stainless steels. Materials Science and Engineering: A, 864, 144540. https://doi.org/10.1016/j.msea.2022.144540

Moradi, M., Ghorbani, D., Moghadam, M. K., Kazazi, M., Rouzbahani, F., & Karazi, S. (2019). Nd:YAG laser hardening of AISI 410 stainless steel: Microstructural evaluation, mechanical properties, and corrosion behavior. Journal of Alloys and Compounds, 795, 213-222. https://doi.org/10.1016/j.jallcom.2019.05.016

Bonu, V., Srinivas, G., Kumar, V. P., Joseph, A., Narayana, C., & Barshilia, H. C. (2022). Temperature dependent erosion and Raman analyses of arc-deposited H free thick DLC coating on Cr/CrN coated plasma nitrided steel. Surface and Coatings Technology, 436, 128308. https://doi.org/10.1016/j.surfcoat.2022.128308

Jokari-Sheshdeh, M., Mahboubi, F., & Dehghani, K. (2018). Structure and tribological behavior of diamond-like carbon coatings deposited on the martensitic stainless steel: The influence of gas composition and temperature. Diamond and Related Materials, 81, 77–88. https://doi.org/10.1016/j.diamond.2017.11.007

Girisha, K. G., & Rao, K. V. S. (2018). Improvement of corrosion resistance of AISI 410 martensitic steel using plasma coating. Materials Today: Proceedings, 5(2), 7622–7627. https://doi.org/10.1016/j.matpr.2017.11.436

Darmawan, A. S., Purboputro, P. I., Sugito, B., Febriantoko, B. W., Yulianto, A., Suprapto, Sujitno, T., & Purbolaksono, J. (2022). Increasing hardness and corrosion resistance of commercially pure titanium by using plasma nitrocarburizing process. Acta Metallurgica Slovaca, 28(1), 14-18. https://doi.org/10.36547/ams.28.1.1266

Istanbullu, O. B., & Akdogan, G. (2023). Increased body fluid repellency and electrochemical corrosion resistance of intravascular stent materials by ICP-CVD-based DLC thin-film deposition. Diamond and Related Materials, 138, 110251. https://doi.org/10.1016/j.diamond.2023.110251

Khodayari, A., Elmkhah, H., Alizadeh, M., & Maghsoudipour, A. (2023). Modified diamond-like carbon (Cr-DLC) coating applied by PACVD-CAPVD hybrid method: Characterization and evaluation of tribological and corrosion behavior. Diamond and Related Materials, 136, 109968. https://doi.org/10.1016/j.diamond.2023.109968

Downloads

How to Cite

Darmawan, Agung Setyo, Agus Yulianto, Bambang Waluyo Febriantoko, Bibit Sugito, Suprapto, Tjipto Sujitno, Turnad Lenggo Ginta, and Abdul Hamid. 2024. “Increasing Surface Hardness and Corrosion Resistance of AISI 410 Stainless Steel by Forming a Diamond-Like Carbon Thin Film”. Metallurgical and Materials Engineering 30 (2):43-56. https://doi.org/10.56801/MME1048.

Issue

Section

Research