The Effect of Liquidus Aging on The Performance of Phase-Stabilized Wax with Solid Nano Additives

Authors

  • Dwi Rahmalina Department of Mechanical Engineering, Universitas Pancasila, Indonesia
  • La Ode Mohammad Firman Department of Mechanical Engineering, Universitas Pancasila, Indonesia
  • Ismail Ismail Department of Mechanical Engineering, Universitas Pancasila, Indonesia
  • Reza Abdu Rahman Department of Mechanical Engineering, Universitas Pancasila, Indonesia

DOI:

https://doi.org/10.56801/MME1037

Keywords:

dendrite, hydrocarbon wax, phase stabilizer, polyethylene, solid additives

Abstract

The present work assesses phase stabilized HW (hydrocarbon wax) with nano additives through liquidus aging treatment. The aging treatment is performed by storing the sample in the liquid phase at 130 °C for 250 hours. The sample performance is assessed according to the heating and cooling rate change before and after aging treatment. The finding indicates a severe decrement in the heating rate of thermal conductivity enrichment (TCE)-HW up to 24.4% and 7.5% for the discharge rate. The phase-stabilized HW performs better according to its heating rate, which only decreases by around 10.9% and the discharge rate by only 1.2%. The heating profile for HW shows a distinctive phenomenon, indicated by a two-step temperature spike of 6.8 °C and 11.8 °C at the solid-solid and solid-liquid transition. Contrary to that, the SHW presents a suitable profile where the temperature increases steadily until 86.3 °C with the average heating rate around 2.97 °C/min. The surface observation shows that the phase-stabilized polyethylene (HDPE) decreases the potential of void formation. As a result, the SHW maintains suitably the distribution of nano additives after aging treatment. Thus, phase stabilization is critical to ensure stable operation of HW with nano additives for the TES system.

References

Hussain Rizvi, S. S., Chaturvedi, K. T., & Lal Kolhe, M. (2023). A review on peak shaving techniques for smart grids. AIMS Energy, 11(4), 723–752. https://doi.org/10.3934/energy.2023036

Harati, E., & Kah, P. (2022). Laser welding of aluminum battery tab to variable Al/Cu busbars in Li-ion battery joint. AIMS Materials Science, 9(6), 884–918. https://doi.org/10.3934/MATERSCI.2022053

Papadaki, D., Foteinis, S., Binas, V., Assimakopoulos, M. N., Tsoutsos, T., & Kiriakidis, G. (2019). A life cycle assessment of PCM and VIP in warm Mediterranean climates and their introduction as a strategy to promote energy savings and mitigate carbon emissions. AIMS Materials Science, 6(6), 944–959. https://doi.org/10.3934/matersci.2019.6.944

Choe, K. (2021). Review of wood biomass cyclone burner. Energies, 14(16). https://doi.org/10.3390/en14164807

Khademi, A., Mehrjardi, S. A. A., Said, Z., & Chamkha, A. J. (2023). Heat Transfer Improvement in a Thermal Energy Storage System using Auxiliary Fluid Instead of Nano-PCM in an Inclined Enclosure: A Comparative Study. Journal of Applied and Computational Mechanics, 9(2), 475–486. https://doi.org/10.22055/jacm.2022.41867.3829

Mehrjardi, S. A. A., Khademi, A., Ushak, S., & Alotaibi, S. (2022). Melting process of various phase change materials in presence of auxiliary fluid with sinusoidal wall temperature. Journal of Energy Storage, 52(PA), 104779. https://doi.org/10.1016/j.est.2022.104779

Khademi, A., Darbandi, M., Behshad Shafii, M., & Schneider, G. E. (2019). Numerical simulation of thermal energy storage process benefiting from the phase change materials concept. AIAA Propulsion and Energy Forum and Exposition, 2019, August, 1–9. https://doi.org/10.2514/6.2019-4225

Ameri, M., Sardari, R., & Farzan, H. (2021). Thermal performance of a V-Corrugated serpentine solar air heater with integrated PCM: A comparative experimental study. Renewable Energy, 171, 391–400. https://doi.org/10.1016/j.renene.2021.02.113

Kim, S. H., Pandey, S., Park, S. H., & Ha, M. Y. (2022). A numerical investigation of the effect of fin inclination angle on the thermal energy storage performance of a phase change material in a rectangular latent heat thermal energy storage unit. Journal of Energy Storage, 47(January), 103957. https://doi.org/10.1016/j.est.2022.103957

Yadav, C., & Sahoo, R. R. (2021). Effect of nano-enhanced PCM on the thermal performance of a designed cylindrical thermal energy storage system. Experimental Heat Transfer, 34(4), 356–375. https://doi.org/10.1080/08916152.2020.1751744

Hosseininaveh, H., Mohammadi, O., Faghiri, S., & Shafii, M. B. (2021). A comprehensive study on the complete charging-discharging cycle of a phase change material using intermediate boiling fluid to control energy flow. Journal of Energy Storage, 35(October 2020), 102235. https://doi.org/10.1016/j.est.2021.102235

Nekoonam, S., & Roshandel, R. (2021). Modeling and optimization of a multiple (cascading) phase change material solar storage system. Thermal Science and Engineering Progress, 23(January), 100873. https://doi.org/10.1016/j.tsep.2021.100873

Wu, L., Zhang, X., & Liu, X. (2020). Numerical analysis and improvement of the thermal performance in a latent heat thermal energy storage device with spiderweb-like fins. Journal of Energy Storage, 32(August), 101768. https://doi.org/10.1016/j.est.2020.101768

Khademi, A., Mehrjardi, S. A. A., Said, Z., Saidur, R., Ushak, S., & Chamkha, A. J. (2023). A comparative study of melting behavior of phase change material with direct fluid contact and container inclination. Energy Nexus, 10(January), 100196. https://doi.org/10.1016/j.nexus.2023.100196

Sheikholeslami, M., Haq, R. ul, Shafee, A., Li, Z., Elaraki, Y. G., & Tlili, I. (2019). Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. International Journal of Heat and Mass Transfer, 135, 470–478. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.003

Suyitno, B. M., Rahmalina, D., & Rahman, R. A. (2023). Increasing the charge / discharge rate for phase-change materials by forming hybrid composite paraffin / ash for an effective thermal energy storage system. AIMS Material Science, 10(1), 70–85. https://doi.org/10.3934/matersci.2023005

Hosseininaveh, H., Rahgozar Abadi, I., Mohammadi, O., Khademi, A., & Behshad Shafii, M. (2022). The impact of employing carbon nanotube and Fe3O4 nanoparticles along with intermediate boiling fluid to improve the discharge rate of phase change material. Applied Thermal Engineering, 215(June), 119032. https://doi.org/10.1016/j.applthermaleng.2022.119032

Du, Y., Zhou, T., Zhao, C., & Ding, Y. (2022). Molecular dynamics simulation on thermal enhancement for carbon nano tubes (CNTs) based phase change materials (PCMs). International Journal of Heat and Mass Transfer, 182, 122017. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122017

Abdelrazik, A. S., Saidur, R., Al-Sulaiman, F. A., Al-Ahmed, A., & Ben-Mansour, R. (2022). Multiwalled CNT and graphene nanoplatelets based nano-enhanced PCMs: Evaluation for the thermal performance and its implications on the performance of hybrid PV/thermal systems. Materials Today Communications, 31(May), 103618. https://doi.org/10.1016/j.mtcomm.2022.103618

Xu, C., Xu, S., & Eticha, R. D. (2021). Experimental investigation of thermal performance for pulsating flow in a microchannel heat sink filled with PCM (paraffin/CNT composite). Energy Conversion and Management, 236(December 2020), 114071. https://doi.org/10.1016/j.enconman.2021.114071

Liu, L., Zhang, X., Xu, X., Zhao, Y., & Zhang, S. (2020). The research progress on phase change hysteresis affecting the thermal characteristics of PCMs: A review. Journal of Molecular Liquids, 317, 113760. https://doi.org/10.1016/j.molliq.2020.113760

Yang, X. G., & Wang, C. Y. (2018). Understanding the trilemma of fast charging, energy density and cycle life of lithium-ion batteries. Journal of Power Sources, 402(September), 489–498. https://doi.org/10.1016/j.jpowsour.2018.09.069

Wang, Q., Zhou, D., Chen, Y., Eames, P., & Wu, Z. (2020). Characterization and effects of thermal cycling on the properties of paraffin/expanded graphite composites. Renewable Energy, 147, 1131–1138. https://doi.org/10.1016/j.renene.2019.09.091

Deng, Z., Li, J., Zhang, X., Yao, F., & Shen, C. (2020). Melting intensification in a horizontal latent heat storage (LHS) system using a paraffin / fractal metal matrices composite. Journal of Energy Storage, 32(April), 101857. https://doi.org/10.1016/j.est.2020.101857

Ali, S., Mehrjardi, A., Khademi, A., & Said, Z. (2023). Enhancing Latent Heat Storage Systems: The Impact of PCM Volumetric Ratios on Energy Storage Rates with Auxiliary Fluid Assistance. Energy Nexus, 100227. https://doi.org/10.1016/j.nexus.2023.100227

Soo, X. Y. D., Png, Z. M., Chua, M. H., Yeo, J. C. C., Ong, P. J., Wang, S., Wang, X., Suwardi, A., Cao, J., Chen, Y., Yan, Q., Loh, X. J., Xu, J., & Zhu, Q. (2022). A highly flexible form-stable silicone-octadecane PCM composite for heat harvesting. Materials Today Advances, 14, 100227. https://doi.org/10.1016/j.mtadv.2022.100227

Chriaa, I., Karkri, M., Trigui, A., Jedidi, I., Abdelmouleh, M., & Boudaya, C. (2021). The performances of expanded graphite on the phase change materials composites for thermal energy storage. Polymer, 212(October 2020), 123128. https://doi.org/10.1016/j.polymer.2020.123128

Gandhi, M., Kumar, A., Elangovan, R., Meena, C. S., Kulkarni, K. S., Kumar, A., Bhanot, G., & Kapoor, N. R. (2020). A review on shape-stabilized phase change materials for latent energy storage in buildings. Sustainability (Switzerland), 12(22), 1–17. https://doi.org/10.3390/su12229481

Mu, M., Basheer, P. A. M., Sha, W., Bai, Y., & McNally, T. (2016). Shape stabilised phase change materials based on a high melt viscosity HDPE and paraffin waxes. Applied Energy, 162, 68–82. https://doi.org/10.1016/j.apenergy.2015.10.030

Suyitno, B. M., Pane, E. A., Rahmalina, D., & Rahman, R. A. (2023). Improving the operation and thermal response of multiphase coexistence latent storage system using stabilized organic phase change material. Results in Engineering, 18(May), 101210. https://doi.org/10.1016/j.rineng.2023.101210

Thonon, M., Fraisse, G., Zalewski, L., & Pailha, M. (2021). Analytical modelling of PCM supercooling including recalescence for complete and partial heating/cooling cycles. Applied Thermal Engineering, 190(October 2020), 116751. https://doi.org/10.1016/j.applthermaleng.2021.116751

Yang, B., Raza, A., Bai, F., Zhang, T., & Wang, Z. (2019). Microstructural evolution within mushy zone during paraffin’s melting and solidification. International Journal of Heat and Mass Transfer, 141, 769–778. https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.019

Shamseddine, I., Pennec, F., Biwole, P., & Fardoun, F. (2022). Supercooling of phase change materials: A review. Renewable and Sustainable Energy Reviews, 158(March 2021), 112172. https://doi.org/10.1016/j.rser.2022.112172

Vasu, A., Hagos, F. Y., Mamat, R., Kaur, J., & Noor, M. M. (2019). The effect of thermal cyclic variation on the thermophysical property degradation of paraffin as a phase changing energy storage material. Applied Thermal Engineering, 149(December 2018), 22–33. https://doi.org/10.1016/j.applthermaleng.2018.12.033

Downloads

How to Cite

Rahmalina, Dwi, La Ode Mohammad Firman, Ismail Ismail, and Reza Abdu Rahman. 2024. “The Effect of Liquidus Aging on The Performance of Phase-Stabilized Wax With Solid Nano Additives”. Metallurgical and Materials Engineering 30 (2):1-11. https://doi.org/10.56801/MME1037.

Issue

Section

Research