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Abstract 
In this paper, a numerical simulation has been performed to study the fluid flow 

and heat transfer around a rotating circular cylinder over low Reynolds numbers. Here, 

the Reynolds number is 200, and the values of rotation rates (α) are varied within the 

range of 0 < α < 6. Two-dimensional and unsteady mass continuity, momentum, and 

energy equations have been discretized using the finite volume method. SIMPLE 

algorithm has been applied for solving the pressure linked equations. The effect of 

rotation rates (α) on fluid flow and heat transfer were investigated numerically. Also, 

time-averaged (lift and drag coefficients and Nusselt number) results were obtained and 

compared with the literature data. A good agreement was obtained for both the local and 

averaged values. 

Keywords: unsteady flow; rotation rates; circular cylinder; Reynolds number. 

Introduction 
Cross-flow normal to the axis of a stationary circular cylinder and the associated 

problems of heat and mass transport are encountered in a wide variety of engineering 

applications. Both experimental measurements and numerical computations have 

confirmed the onset of instability of the wake flow behind a cylinder beyond a critical 

Reynolds number. 

Zdravkovich [1] has compiled almost all the experimental, analytical and 

numerical simulation data on flow past cylinders, available since 1938 and systematically 

classified this challenging flow phenomenon into five different flow regimes based on the 

Reynolds number. In the present study, the computation is restricted only to the first few 

regimes designated by Zdravkovich as (1) creeping laminar state (L1) of flow ( 0 < Re < 

4 ), (2) laminar flow (L2) with steady separation ( 4 < Re < 48) forming a symmetric 

contra-rotating pair of vortices in the near wake, (3) laminar flow (L3) with periodic 

vortex shedding ( 48 < Re < 180 ), and finally (4) part of the transition-in-wake (TrW) 
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regime ( 180 < Re < 400 ) when the three- dimensional instabilities lead to the formation 

of streamwise vortex structure.  

Recently, Rajani et al. [2] have studied the laminar flow numerically past a circular 

cylinder for Re = 100 to 400. An implicit pressure-based finite volume method was used 

here. The temporal evolution of the lift and drag coefficients have been computed 

separately from both 2-D and 3-D simulations of the flow for the values of Re = 100, 200, 

250, 300 and 400. They also reported that up to Re = 200, 2-D and 3-D computation 

results are observed to be almost overlapping, showing no significant difference in the 

temporal variation of the lift and drag coefficients at the statistically stationary state.  

In the study of wake dynamics, bluff body rotation has always drawn considerable 

attention, mainly due to its effects on boundary layer separation and the Magnus effect. 

An increase in the lift magnitude more than classic Prandtl’s limit due to an increase in 

the rotation rate of the circular cylinder was proposed by Gaulart [3]. For the similar flow 

configuration, Kang and Choi [4] followed with the numerical solution of the unsteady 

governing equations in the primitive variables velocity and pressure for flows with Re = 

60, 100 and 160 with 0 = q = 2.5. Their results showed that vortex shedding vanishes 

when q increases beyond a critical value which follows a logarithmic dependence on the 

Reynolds number (e.g., the critical dimensionless rotation rate q = 1.9 for Re = 160). 

Later, the work of (Mittal & Kumar, 2003) performed a comprehensive numerical 

investigation by fixing a moderate value of Re = 200 while considering a wide interval 

for the dimensionless rotation rate of 0 ≤ q ≤ 5. They used the finite-element method to 

solve the unsteady incompressible Navier–Stokes equations in two-dimensions for the 

primitive variables velocity and pressure [5]. 

In work [6], the laminar flow and heat transfer from a rotating circular cylinder 

with uniform planar shear was investigated, where the free stream velocity varies linearly 

across the cylinder using Multi-Relaxation-Time (MRT) LBM. Recently, the convective 

heat transfer from a rotating cylinder with inline oscillation was studied in the literature 

[7] at Re numbers of 100, 200, and 300. Different rotational speeds of the cylinder (0–

2.5) are considered at various oscillating amplitudes and frequencies with three different 

Pr numbers of 0.7, 6, and 20. 

Paramane et al. [8] investigated the forced convection heat transfer numerically 

across a rotating circular cylinder in the 2-D laminar regime. They concluded that the 

rotation could be used as a drag reduction and heat transfer suppression technique. 

Subsequently, Paramane et al. [9] studied the free stream flow numerically and forced 

convection heat transfer across a rotating cylinder, dissipating heat flux for Reynolds 

numbers of 20-160 and a Prandtl number of 0.7. Their results show that, at higher 

rotational velocity, the Nusselt number is almost independent of Reynolds number and 

the thermal boundary conditions.  

Experimental measurements of the flow past a rotating cylinder were performed 

by Barnes [10]. At low rotation, rates to determine the value at which shedding is 

suppressed for Reynolds numbers between 50 and 65. The vortex shedding behind a 

rotating cylinder disappears when α  is increased above the value of 2 is showed by 

Stojkovic et al. [11].  

Because there is a lack of study of flow over a rotating cylinder and due to its broad 

application, heat transfer from a circular cylinder with constant wall temperature is 

investigated by using numerical method. 
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Problem Statement and Mathematical Formulation 

Consider the two-dimensional, laminar flow of an incompressible Newtonian fluid 

with a uniform inlet velocity U∞ and temperature T∞ across an infinitely long (in the z-

direction) circular cylinder (Fig. 1). A circular cylinder of diameter D is placed 

concentrically in a circular domain of diameter D∞, to convert the physical problem into 

a computational equivalent. The radius of the enveloping circular domain is chosen to be 

sufficiently large in order to minimize the boundary effects.  

The surface of the solid cylinder is maintained at a constant wall temperature, Tw. 

The thermophysical properties of the streaming liquid are assumed to be independent of 

the temperature and the viscous dissipation effects in the energy equation are neglected 

in this study. 

 

Fig. 1. Schematics of the unconfined flow around a circular cylinder. 

Governing equations 

The flow and heat transfer phenomena are governed by the continuity, Navier–

Stokes and thermal energy equations written in their dimensionless forms, as follows. 
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Energy Equation: 
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Boundary conditions 

According to Fig. 1 the governing Eqs. (1) – (4) are subjected to the following 

boundary conditions: 

Inlet boundary ( r = R∞ = 150R,  -π/2 ≤ θ ≤ π/2 ) : 

Uθ  =  αsinθ ,  Ur  = -αcosθ  ,  T  =  T 5 

Outlet boundary  ( r = R∞ = 150R,  π/2 ≤ θ ≤ -π/2 ) : 

∂𝑈𝜃

∂𝑟
 =   0  ,

∂𝑈𝑟

∂𝑟
 =   0  ,

∂𝑇

∂𝑟
 =   0 6 

Cylinder wall boundary (r = R , 0 ≤ θ ≤ 2π ) : 

Uθ  =  0 ,  Ur  = 0   ,  T  =  Tw 7 

Auxiliary equations:  

The wall pressure coefficient, CP, may be defined as the following: 

𝐶𝑝 =  
𝑃−𝑃0+0.5𝜌𝑈∞

2

0.5𝜌𝑈∞
2  8 

Where P0 is the pressure at the front stagnation point. 

• In the time-periodic flow regime, there is also a net force acting on the cylinder in the 

lateral direction and this is expressed in terms of a lift coefficient CL, defined as 

follows: 

𝐶𝐿 =  
𝐹𝐿

0.5𝜌𝐷𝑈∞
2     9 

Where FL is the lift force. 

• The local Nusselt number of the fluid, based on cylinder diameter, is defined as: 

• non-dimensional rotation rate  

𝛼 =  
Ω𝐷

2𝑈∞
 10 

• The local Nusselt number of the fluid, based on cylinder diameter, is defined as: 

𝑁𝑢 = − [
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• Surface averaged Nusselt number of a fully developed thermal boundary layer is 

defined as: 

𝑵𝒖𝒂𝒗𝒆 =
𝟏
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∫ 𝑵𝒖𝒅𝒔
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 12 
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Grid generation 

In the present meshing scheme, a cylinder with a diameter D resides in the center 

of the chosen computational domain. The outer boundary of the domain is circular with 

diameter D∞ from the center of the cylinder, Fig. 1. The number of node points along the 

cylinder circumference and along the normal direction is represented by ‘N’ and ‘M’ 

respectively. We use M=144 nodes stretched along the radial direction and N=121 

equispaced nodes around the circumferential direction. The normal wall distance of the 

first internal grid point is maintained at Δr = 0.0001D, required for adequate resolution of 

the sharp near-wall gradients of the flow variables. 

Numerical Method  

The present numerical investigation has been carried out using FLUENT (version 

6.3.26). The unstructured quadrilateral cells of non-uniform grid spacing are generated 

using the commercial software GAMBIT (version 2.3.16). The grid is chosen to be 

sufficiently fine to capture the steep gradients in the vicinity of the cylinder. The second-

order upwind scheme has been used to discretize the convective terms in the momentum 

and energy equations. The SIMPLE scheme (semi-implicit method for the pressure linked 

equations) is used for solving the pressure-velocity decoupling. FLUENT solves the 

system of algebraic equations using the Gauss–Siedel (G–S) point-by-point iterative 

method. 

Results and Discussion 

Validation of results 

In order to validate our numerical solution, estimated results for drag coefficients 

in forced convective heat transfer of fluid flow around a circular cylinder are compared 

with the available data in the literature. Separate runs were necessary to determine the 

results at specific Reynolds numbers of 100 and 200. Table 2 compares the drag 

coefficient CD obtained in the present research with those from references [2-17-18-19-

20-21]. The results are in excellent agreement with previous studies. 

In Fig. 2, the stagnation pressure coefficient reduces from 1 as α increases. At α = 

2, when a closed streamline circulating around the cylinder can be observed, it becomes 

less than zero. For α ≥ 2, the pressure coefficient is negative everywhere on the cylinder 

rotation on the flow. 

Table 1. Comparison between present results and literature data for at Re 100 and 200. 

Refrence Re =  100 Re =  200 

 CD St CD St 

Ha. Roy [19] 

I., M. S. [18] 

Ding et al. [17] 

B.N. Ra. [2] 

Lam et al. [20] 

M. and A. [21] 

Present study 

1.352 

1.344 

1.356 

1.368 

1.36 

1.368 

1.322 

0.161 

0.165 

0.166 

0.172 

0.160 

0.172 

0.163 

1.32 

1.337 

1.348 

1.376 

1.32 

1.376 

1.316 

0.192 

0.194 

0.196 

0.192 

0.196 

0.192 

0.183 
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Fig. 2. Comparison results for pressure coefficient around the surface of the cylinder for 

various values of α at Re = 200 with Mittal and Kumar (2003) 

Structure of flow field 

The time histories of the lift coefficient for the flow past a rotating cylinder for 

various values of α at Re = 200 is presented in Fig. 3. The phase diagrams of CL and CD 

are shown in Fig. 4. For 0 ≤ α ≤ 1.9, a von Karman street is seen in the wake behind the 

cylinder; it achieves a steady-state for α > 1.90. An increase in the rotation rate is 

accompanied by an increased upward deflection of the wake and a reduction in its lateral 

width. At α = 1.91, the vortex shedding ceases and the flow achieves a steady state. It is 

seen that the flow remains steady for 1.91 ≤ α ≤ 4.35. However, the flow is unstable again 

for 4.34 ≤ α ≤ 4.75. Beyond α > 4.75, the flow is steady, but multiple solutions are 

observed. 
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Fig 3. Temporal evolution of lift coefficients for laminar flow past a rotating circular 

cylinder at Re = 200. 

 

Fig. 4. Phase diagrams of CL and CD for various values of a for Re = 200. 
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The flow past a non-rotating cylinder is symmetric and characterized by two 

recirculation regions just behind the body. When increasing the rotation rate of the 

cylinder, the lower of these two regions disappears. The upper bubble, instead, detaches 

from the surface and becomes smaller. The stagnation point moves away from the 

cylinder surface rotating in the direction opposite to that of the cylinder rotation. Further 

increasing the value of α, the upper vortex disappears and the rotation of the cylinder 

dominates flow. The critical α values are presented in Fig. 5 for different Reynolds 

numbers in comparison with the results of Stojkovic et al. (2003) and Mittal & Kumar 

(2003). Fig 5 shows a stability map with the three curves representing the rotation rates ( 

αL1, αL2 and αL3 ) at which three transitions between steady and unsteady flows with the 

four flow regimes are found: I Unsteady regime for α ≤ αL1; I Steady regime at αL1 ≤ α ≤ 

αL1; II Unsteady regime for αL2 ≤ α ≤ αL3; and II Steady regime for α > αL1. Thus, for a Re 

in the vortex shedding regime of the stationary cylinder, the suppression of vortex 

shedding occurs at a specific rotation rate for a rotating cylinder and the flow remains 

steady at higher rotation rates except for a narrow range of α at which vortex shedding 

reappears. 

Table 2 summarizes the basic integral parameters (Strouhal number St, lift 

coefficient CL, pressure lift coefficient CLp, shear stress lift coefficient CLf and average 

Nusselt number), computed in the present study. 

 

Fig. 5. Stability map for various Re and rotation rates α. 1⎯ present study, 2⎯ results of 

[23], 3⎯ results of the [5].  
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Table 2. Value of Strouhal number, mean lift coefficients, and average Nusselt number 

with α (Pr = 7.066). 

α St CL CLP CLf Nuav 

0 0.183 0.00 0.00 0.00 17.55 

0.5 0.184 -0.5853 -0.5917 0.006 17.03 

1 0.184 -1.8337 -1.7744 -0.059 15.99 

1.5 0.187 -3.2424 -3.1046 -0.138 13.27 

1.9 0.177 -4.8073 -4.5792 -0.228 10.87 

2.5 ---- -7.6198 -7.2841 -0.336 9.38 

3 ---- -10.3379 -9.9184 -0.419 9.18 

3.5 ---- -13.6562 -13.143 -0.513 9.48 

4 ---- -17.5829 -16.967 -0.616 9.49 

4.35 0.039 -20.3172 -19.653 -0.664 8.89 

4.5 0.027 -23.7087 -22.942 -0.767 6.50 

4.7 0.021 -24.9829 -24.177 -0.806 5.39 

5 ---- -27.0707 -26.235 -0.836 3.73 

5.5 ---- -30.5923 -29.691 -0.901 3.16 

6 ---- -34.0467 -33.087 -0.959 2.82 

 

Fig. 6. Variation of Strouhal number with increasing rotation rate α.  

1⎯ present study, 2⎯ results of [12]. 

Fig. 6 shows the variation of the Strouhal number for various rotation rate α. The 

Strouhal number (St = fD/U) of vortex shedding is practically constant and decreases as 

a function of α before the first bifurcation, and is very low in the second mode interval.  
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Fig. 7 shows the stagnation point for various rotation rates α (red line present the 

first stagnation points, and green line present the second stagnation points). It can be 

observed that for the case when α < 3, there are two apparent stagnation points.  

 

 

Fig. 7. Variation of stagnation point with increasing rotation rate α. 

The first is attributed to the collision of the rotating boundary layer with the free-

stream flow, while the second to the creation of a strong vortex downstream of the 

cylinder, which is formed due to the strong vorticity gradient between the free-stream 

layer and the rotating fluid, moving upstream and towards the top of the cylinder. As the 

dimensionless rotational rate increases, the upstream stagnation point moves downstream 

until α = 4.  
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The downstream vortex begins to contract and entirely collapses at α = 4. For 

greater α, the flow becomes swirling with a single stagnation point, which moves towards 

the outer region of the free-stream flow. 

Fig. 8 shows that the maximum velocity Umax decreases as a function of α The 

thickness of the boundary layer Y at the point where the velocity is maximal is shown in 

Fig. 9, Ymax increases with the rotation rate. 

 

Fig. 8 Variation of the maximum velocity of the moyen fields as a function of α. 

 

Fig. 9 Variation of the maximum boundary layer thickness of the moyen fields as a 

function of α. 
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Heat transfer 

A comparison between local Nusselt number on the surface of the cylinder for 

different Reynolds numbers and various rotation rates α is shown in  Fig. 10. For the 

stationary cylinder, the variation of Nu is found to be symmetrical at θ = 180; The 

maximum value of the local Nu number occurs at the front stagnation point (θ = 0) for all 

Re. Further increase in rotation rate, NuL becomes almost independent of Re at higher 

rotation rates (α = 6). 
Variation of average Nusselt number for different values of rotation rates α is 

shown in Fig. 11. For various rotation rates α, to understand the suppression of heat 

transfer. It can be seen from this figure that the suppression increases with increasing α, 

having a value of 65.18 % for Re =200 at α = 6. Thus, cylinder rotation can be used not 

only for controlling flow but also as an efficient heat transfer suppression technique.  

 

Fig 10. Variation of local Nusselt number on cylinder surface with various rotation  

rate α. 

 

Fig. 11. Variation of average Nusselt number on the wall of cylinder versus various 

rotation rate α.  
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Streamline Vorticity Isotherm 

   
a)   

   
b)   

   
c)   

   
d)   

Fig. 12. The streamlines, vorticity and isotherm contours around the cylinder, at  

a) α = 1, b) α = 2, c) α = 3, d) α = 5. 
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The contours of positive and negative vorticity are presented in Fig. 12. The 

positive vorticity is generated mostly in the lower half of the surface of the cylinder while 

the negative vorticity is generated mostly in the upper half. 

For the temperature distribution contours, it can be observed, in increasing the value of 

the rotation rate, the maximum density of isotherms shifts from the front surface towards 

the bottom surface of the rotating cylinder. It is also observed that isotherms shift in the 

direction of rotation of the cylinder and become almost vertical at higher values of the 

rotation rate. The temperature distributions presented by way of isotherms can be used to 

interpret the variation in the local and average heat transfer characteristics with rotation 

rate. 

 

Conclusion 
Unsteady laminar flow behind a rotating circular cylinder has been subjected to 

numerous experimental and computational studies. In this work, the flow over and heat 

transfer from a circular cylinder immersed in Newtonian fluids has been studied 

numerically. The flow transition map found by earlier researchers is shown here for 

rotation rates. The von Karman vortex street disappears when the rotation rate of the 

cylinder increases to α = 2. This is due to the weakening of the shear layers associated 

with flow in the wake. A second shedding mode is observed in the range of  4.34 ≤ α ≤ 

4.75, characterized by the shedding of one counterclockwise vortex from the upper part 

of the cylinder. The core of the instability is identified in the advection of the positive 

vorticity of the base flow from the low–rear part of the cylinder to the stagnation point 

where it accumulates and is then shed. The average Nusselt number is found to decrease 

with increasing rotation rate. Heat transfer suppression due to rotation increases with 

increasing rotation rate. 
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Nomenclature 

CD         coefficient of drag  

CL            coefficient of lift 

D           cylinder diameter, m 

f             frequency of vortex shedding 

k            thermal conductivity, W/m K  

P            non-dimensional pressure 

Pr          Prandtl number, Pr = v/α 

Re          Reynolds number, Re = ρU∞D/μ 

t             non-dimensional time 

T            non- dimensional temperature  

Ur, Uθ    non-dimensional velocity components 

r,θ          non-dimensional coordinates 

Greek 

μ            viscosity 

ρ            density 

v             kinetic viscosity 

Subscripts 

∞            inlet condition 

w            wall 

avg         average 

Ω           constant angular velocity of the cylinder rotation  
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