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Abstract 
The deep cryogenic heat treatment is an old and effective heat treatment, 

performed on steels and cast irons to improve the wear resistance and hardness. This 

process includes cooling down to the liquid nitrogen temperature, holding the samples 

at that temperature and heating at the room temperature. The benefits of this process are 

significant on the ferrous materials, but recently some studies focused on other 

nonferrous materials. This study attempts to clarify the different behavior of some 

materials subjected to the deep cryogenic heat treatment, as well as explaining the 

common theories about the effect of the cryogenic heat treatment on these materials. 

Results showed that polymers exhibit different behavior regarding to their crystallinity, 

however the magnesium alloys, titanium alloys and tungsten carbide show a noticeable 

improvement after the deep cryogenic heat treatment due to their crystal structure. 

Keywords: Deep Cryogenic Treatment; Tungsten carbide; Magnesium and Titanium 

alloys; Polymers; Composites. 

Introduction 
Cryogenic heat treatment was introduced to the industries in the 1920s. This 

special kind of supplementary heat treatment plays an important role in selecting the 

finishing production procedure of parts with the lowest wear rate, the lowest austenite 

percentage and the lowest economic cost. This specific heat treatment is classified into 

two different groups: (i) the shallow cryogenic heat treatment performed at temperatures 

higher than 125 K, and (ii) the deep cryogenic heat treatment attributed to the treatments 

in which samples are cooled down to lower temperatures (125–77 K)[1-3]. 

The main effect of the cryogenic heat treatment of steels is the elimination of the 

retained austenite. Another effect that is observed only in the deep cryogenic treatment 

is the reduction of the carbides size, increasing its percentage and making a more 
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homogenized carbide distribution [4-8]. These microstructural changes occur as a 

consequence of the carbon atoms jumping at lower temperature due to the high degree 

of the contraction in the steel structure. These wandering carbon atoms jump to the 

neighboring sites and act as appropriate places for the eta chromium carbide nucleation 

in the prior tempering. These new carbides increase the carbides percentage and make a 

more homogenous carbide distribution in the steel and cast iron materials after the deep 

cryogenic treatment [4, 6, 9-16].  

This improvement is considerably important in the tools, such as gears, brakes, 

rotors, bearings, pinion shafts, crown wheels and dies [17],whose wear resistance is the 

most essential factor in the tool life. 

The deep cryogenic heat treatment is applied on a wide range of ferrous materials 

including carburized steels [11, 18-20], high speed steels [21-23] and tool steels [10, 22, 

24-32]. Recent studies has been focused on the deep cryogenic heat treatment effect on 

the tungsten carbide [27, 30-33], magnesium alloys [34, 35] and composites and 

polymers [36, 37]. 

In this study the deep cryogenic heat treatment of different materials including 

tungsten carbide, polymers and their composites, magnesium and titanium alloys, were 

reviewed to study the effect of this treatment and the theories about this phenomenon on 

these materials. 

Deep cryogenic heat treatment 

Tungsten carbide 

Tungsten carbide is one of the most useful materials for cutting tools. Tungsten 

carbide is a ceramic compound regularly used with cobalt as the binder to create cutting 

tool bits. Cobalt fulfills the space between the tungsten carbide powders and during the 

sintering a homogenous tool is produced (Fig. 1) [30-33, 38]. The tools produced by 

tungsten carbide show 10 times longer working life as compared with the HSS tools 

[39]. A WC-Co tool consists of four phases: 

1- Alpha (α–phase) which is formed from tungsten carbide (WC) and has a 

hexagonal structure with central carbon atoms (Fig. 2). 

2- Beta (β- phase) which is the cobalt phase and has a hexagonal structure at 

room and the FCC structure at the temperature above 416 °C. It is worth mentioning 

that cobalt occupies the next site in the Periodic table after iron and has similar structure 

and valence band and shows behaviors similar to iron. 

3- Gamma (γ-phase) that consists of the cubic lattice carbides like TaC, TiC, etc. 

4- Eta (η-phase) consists of multiple carbides including tungsten and at least one 

metal binder. These carbides are generally cobalt bonded carbides like ((CoW3)C and 

((Co6W3)C) (Fig. 3) [33, 40, 41]. 

Most of the studies show that cryogenic heat treatment improves the wear 

behavior of the WC-Co tools specifically at low temperatures and not long working 

cycles [30-33, 38-41]. In other words, at high temperatures, the cryogenic heat treatment 

loses its ability in improving the wear resistance [32, 33]. 

This improvement is explained via formation of the new η carbides during the 

cryogenic treatment. These newly formed carbides show a more uniform distribution 

with higher percentage and considerably improve the wear behavior. This phase fulfills 

the empty spaces between the structure and hence creates a more coherent structure with 
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a more dense particle distribution [30, 31, 33, 41]. Moreover, a dense structure leads to 

a more thermal coefficient that increases the tool life due to the higher thermal 

resistance [41]. Some studies also show that increasing the η phase leads to a decrease 

in the β phase, which intensifies the wear resistance improvement [30, 40]. 

Beyond the η phase precipitation, β phase reduction and formation of a denser 

structure with a higher thermal conductivity, a stress relaxation is also observed in the 

cryogenically treated tungsten carbide tools. This stress relaxation improves the tool life 

because of lowering the risk of the stress-induced fractures. This stress is produced 

during the sintering due to a difference in thermal expansion coefficient between the 

WC powder and the cobalt binder [27, 33, 40]. Beyond this, it was also revealed that the 

tungsten solubility in the Co phase decreases as the consequence of the Co phase 

transformation during the deep cryogenic heat treatment and hence the tungsten 

precipitates increase (Fig. 4) [42, 43]. 

It was also shown that the deep cryogenic heat treatment improves the wear 

resistance vividly in WC-Fe-Ni cemented carbides due to the martensitic transformation 

in the binder phase as well as increasing the content of the -(Fe,Ni) 

 

Fig. 1. Schematic representation of a WC-Co composite tool [33]. 

 

Fig. 2. Schematic representation of WC hexagonal structure [33]. 
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Fig. 3. Surface microstructure of WC-Co cutting tool after etching according to ASTM 

B390 [30]. 

 

Fig. 4. The effect of the deep cryogenic heat treatment on the tungsten solubility in the 

Co phase[42]. 

Polymers and their composites 

Wear behavior of polymers is important in many applications. Polymers 

demonstrate different behaviors after the cryogenic heat treatment [17, 36, 37]. 

Polytetrafluoroethylene (PTFE) shows ~60% and polyetherimide (PEI) shows ~30% 

wear improvement after the deep cryogenic heat treatment. In spite of this improvement, 

polyimide (PI) and copolymer PEI do not show considerable changes (Fig. 5) [36]. 



Amini et al. - Cryogenic Heat Treatment - A Review Of The Current State 5 

 
The DSC and XRD analyses of the amorphous or semi-amorphous polymers 

(PEI and PI) show a noticeable increase in the crystallinity due to the deep cryogenic 

heat treatment. It is also observed that deep cryogenic heat treatment increases the 

residual stress that enhances the wear resistance of PEI. In the completely crystalline 

polymers, the glass transition temperature (Tg) does not change, but the wear resistance 

will be improved. This can be the consequence of agglomeration and fibrillation 

phenomena produced in the PTFE structure during the deep cryogenic treatment (Fig. 6) 

[36]. It is also clarified that deep cryogenic heat treatment transfers the molecules to the 

new situation to occupy less space and decreases the random orientation. This 

phenomenon produces a denser polymer with improved bonding strength which leads to 

a better wear behavior as compared with the un-treated polymers [37]. 

It is also revealed that cryogenic treatment of the composites with short glass 

fibers is not beneficial due to the disbonding occurred in the contact surface of the resin 

and fibers. In spite of these results, the cryogenic treatment of the PTFE fiber epoxies is 

beneficial for wear improvement due to its effect in the PTFE structure [36]. 

 

Fig.5. Wear behavior of different cryogenically treated and not-treated polymers[36]. 
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Fig. 6. SEM micrograph of PTFE polymer, (a) un-treated and (b) cryotreated [36]. 

Metallic materials 
Magnesium alloys 

Magnesium alloys are used because to their lower weight (as compared with steel 

and aluminum), significant strength to weight ratio [44], as well as good machinability, 

substantial damping capacity and electromagnetic shielding characteristics [44, 45]. 

AZ91 is one of the most popular alloys of magnesium due to its easy casting, significant 

ductility and noticeable machinability. The microstructure of AZ91 contains the HCP 

magnesium phase (α phase) and BCC intermetallic compound of Mg17Al12 (β phase) 

[46, 47].  

It was shown that cryogenic treatment of AZ91 after casting improves the 

mechanical properties and corrosion resistance of AZ91 due to changing the β phase 



Amini et al. - Cryogenic Heat Treatment - A Review Of The Current State 7 

 
distribution after the cryogenic treatment [35, 48]. It was also revealed that deep 

cryogenic heat treatment of the AZ91 slightly improved the hardness and wear behavior 

of the alloy due to its effect on the alloy microstructure [34]. This improvement is a 

consequence of structure contraction, which takes place at low temperatures. Aluminum 

atoms in the β phase were forced to jump to the nearby defects due to structure 

contraction. These atoms would be precipitated as the new Mg17Al12 precipitates during 

aging (Fig. 7). Moreover, the expansion coefficients of the α and β phases are different. 

At low temperatures, this difference leads to different shrinkage values, and 

subsequently some dislocations and micro voids would be produced in the boundaries 

of the phases. These newly formed defects are appropriate places for aluminum atoms 

jumping during the deep cryogenic heat treatment. These atoms would act as 

preferential sites for precipitates to be nucleated during aging [34]. 

  

Fig. 7.SEM micrographs of (a) water cooled and (b) water cooled and deep 

cryogenically treated, AZ91 samples after etching in picral etchant at the magnification 

of 2.00 KX [34]. 

Titanium alloys 

Titanium is vastly uses due to its resistance to corrosive environments as well as 

acceptable mechanical properties and lower weight to strength as compared with the 

steels [49]. Different studies were carried out to investigate the effect of the deep 

cryogenic heat treatment on different alloys of the titanium including, nickel-titanium 

endodontic [50], Ti-6246 titanium alloy [51] and Ti– 6Al–4V alloy [49, 52]. These 

studies showed that the deep cryogenic heat treatment increases the hardness and 

decreases the wear rate of the titanium alloys. It was also revealed that the deep 

cryogenic heat treatment reduced the friction coefficient of the Ti-6Al-4V alloys. These 

changes are intensified in longer holding durations at the deep cryogenic temperatures. 

These phenomena can be related to the reduction of the grain size and the  phase. 

Moreover, it was clarified that a high number of dislocations and twins are produced 

during the deep cryogenic heat treatment are responsible for the wear resistance and 

hardness improvement [49]. During the deep cryogenic heat treatment, titanium 
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structure endures a high degree of contraction. The high degree of contraction as well as 

different thermal expansion coefficient of the  and  phase, produces a high degree of 

newly formed dislocations and twins. In longer holding durations, the content of these 

defects increases due to a higher degree of contraction and hence longer holding 

durations, increase the improvement of the wear resistance and hardness of the deep 

cryogenically treated samples (Fig. 8) [49, 52]. 

 

Fig. 8. Hardness of Ti-6Al-4V titanium alloy at different temperatures (a) and during 

different holding durations (b) at liquid nitrogen temperature [49]. 

Conclusion 
This study represents a literature review of different materials including tungsten 

carbide, polymers and their composites, magnesium and titanium alloys. 

It was documented that different polymers show different behaviors, ranging 

from vivid improvement to vivid reduction in hardness and wear resistance, after the 

deep cryogenic treatment as a consequence of their crystal structure. It was also showed 

that the hardness and wear resistance are improved in tungsten carbide, titanium and 

magnesium alloys after the deep cryogenic heat treatment. These behaviors of tungsten 

carbide are consequence of the η carbides formation, β phase reduction, formation of a 

denser structure with a higher thermal conductivity and a stress relaxation in the 

structure. In the magnesium alloys this behavior is related to the precipitation of the 

Mg17Al12 during the aging treatment. The hardness and wear resistance improvement of 

the titanium alloys is assumed to be a consequence of the grain size and the  phase 

reduction as well as increasing the number of dislocations and twins due to the deep 

cryogenic heat treatment. 
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