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Abstract 
In a bid to address environmental challenges associated with the management of 

waste Coca- Cola glass bottle, this study set out to develop glass ceramic materials 

using waste coca cola glass bottles. Magnesite from Sakatsimta in Adamawa state and 

reagent grade chrome (coloring agent) were used to modify the composition of the 

Coca- Cola glass bottle. X-ray fluorescence (XRF), X-ray diffraction (XRD) and thermo 

gravimetric analysis (TGA) were used to characterize raw materials. Four batches: GC-

1= Coca- Cola glass frit +1% Cr2O3, GC-2=97% Coca- Cola glass frit+ 2% 

magnesite+1% Cr2O3, GC-3=95% Coca- Cola glass frit+ 4%magnesite+1%Cr2O3, GC-

4=93% Coca- Cola glass frit+ 6%magnesite+ 1% Cr2O3 were formulated and prepared. 

Thermal gradient analysis (TGA) results were used as a guide in selection of three 

temperatures (700, 750 and 800°C); three particle sizes -106+75, -75+53, -53µm and 2 

h sintering time were also used; the sinter crystallization route of glass ceramic 

production was adopted. The samples were characterized by X-ray diffraction (XRD) 

analysis. The resulting glass ceramic materials composed mainly of wollastonite, 

diopside and anorthite phases depend on composition as indicated by XRD. 

Keywords: sintering temperature, crystal formation, glass ceramic, residual glassy 

phase 

Introduction 
The chronology of the human race from inception has been predicated on one 

material or the other in the form of tools or simple machine for usage [1]. Modern 

science and technology constantly require new materials with special properties to 

achieve breathtaking innovations. This development centers on the improvement of 

scientific and technological fabrication and working procedures by rendering them 

faster, economically more viable and better in quality. At the same time, new materials 

are introduced to improve general quality of life. Among the entire new materials, glass 
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ceramic materials play a very special role as they offer the possibility of combining the 

special properties of conventional sintered ceramics with the distinctive characteristic of 

glass [2].  

Glass ceramics are normally produced from specially formulated compositions 

which usually contain a nucleating agent. They are melted and shaped into articles of 

desired geometry and then cooled to glass [3]. After that the glass articles are subjected 

to heat treatments to initiate the growth of crystals in situ. Commonly, such heat 

treatment process is carried out in two steps, at the temperature within or slightly above 

the transformation range, to develop nuclei in the glass, and then followed by another 

higher temperature treatment to enhance the growth of crystals on the formed nuclei [4].  

The composition of the crystalline phases and the crystallite sizes define the 

properties of the final material. Therefore, the major components and the composition of 

the parent glass are selected to ensure precipitation of crystals that provide desired 

properties on a glass-ceramic [2]. In the case of internally nucleated glass-ceramics, the 

use of high specific surface glass-powders will act as uniformly scattered nuclei and no 

addition of a special nucleating agent is required. Subsequently, densification of the 

glass-powder compact must take place prior to devitrification. This sequence of events 

starting near the end of the sintering stage comes before crystallization starts which 

allows dense materials to be obtained [5].  

The Nigerian bottling company in its effort to address environmental and social 

challenges is working to reduce the environmental impacts of its packaging at every 

stage of its lifecycle. To achieve this, it has considered many factors such as the weight 

and volume of solid wastes generated, the energy consumed in manufacturing and 

delivering various types of packaging, etc. Polyethylene terephthalate (PET) was 

concluded to be the fastest growing packaging option in the industry. The preference for 

PET bottles leaves us with a number of waste glass bottles that have been produced over 

the years, thereby adding to the existing environmental challenges of waste management 

and control.  
The aim of this research work is to develop and characterize a glass ceramic 

material by sinter crystallization of waste Coca Cola glass bottles and magnesite. 

Materials and Methods 
Materials used in this research work are: Coca-Cola glass bottle, magnesite from 

Sakasimta Adamawa State, distilled water, chrome. The following equipment and 

methods were used: weighing balance, ball mill, measuring cylinder, spring balance, 

hydraulic press, crucible furnace, universal materials testing machine, thermo 

gravimetric analysis (TGA), X-ray fluorescence (XRF), X-ray diffraction (XRD), 

scanning electron microscopy (SEM) and Vickers micro hardness testing. The physical 

properties investigated were: density, porosity and mechanical properties including 

flexural strength (ASTM- C348) and hardness (ASTM-C1327). 

Batch Formulation and Preparation 

In the light of the chemical analysis of Coca-Cola bottle, it was decided to 

modify the composition in order to make it more suitable for obtaining glass ceramic 

materials. Coca-Cola glass bottle, magnesite and chrome (coloring agent) were used as 

starting materials in batch preparations of the glass ceramics. Four batches graded as: 

GC-1, GC-2, GC-3 and GC-4 were used for the study. The corresponding nominal and 
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calculated compositions (from XRF results) of the batches are given in Table 1. Three 

fractions of sizes: -106 +75, -75 +53and -53µm were used. Similarly, sintering was 

carried out for 2h. The temperatures at which the sintering was conducted were: 700, 

750 and 800°C. Samples were designated as: GMPT where M= 0,1,2,3 for 0, 2, 4, 6% 

magnesite, respectively. P= 1, 2, 3 for -106+75, -75+53, -53µm were size fractions, 

respectively, whereas T= 1, 2, 3 for 700, 750 and 800°C were operating temperatures. 

The magnesite was calcined at 400°C for 2h and the components of each batch were 

accurately weighed and properly mixed. 5M polyvinyl alcohol (PVA) was used as 

binder and samples were prepared in the ratio of 98.5% material and 1.5% binder. 324 

rectangular bar (61mm x 16mm x 5mm) samples, 9 samples for each set of conditions 

of M, P and T were prepared based on conventional powder methods for producing 

ceramics (i.e. milling, weighing and mixing, granulating, weighing, pressing and 

sintering). 

Table 1: raw material composition of batches 

Batch Composition 

GC-1 99% Coca-Cola glass frit +1% Cr2O3 

GC-2 97% Coca-Cola glass frit+ 2%magnesite+1% Cr2O3 

GC-3 95% Coca-Cola glass frit+ 4%magnesite+1% Cr2O3 

GC-4 93% Coca-Cola glass frit+ 6%magnesite+ 1% Cr2O3 

Results and Discussion 
The results obtained from the experiments are presented in Table 2 and Figures 

1-20. 

X-ray Fluorescence (XRF)and X-ray Diffraction (XRD) analyses  

Table 2: Chemical composition of Coca-Cola glass bottle and magnesite 

Oxides Coca-Cola bottle (%) Magnesite (%) 

SiO2 68.07 8.12 

Na2O 13.15 0.10 

Al2O3 1.99 1.10 

MgO 0.45 39.90 

P2O5 0.04 0.02 

SO3 0.41 0.03 

CL 0.02 - 

K2O 0.78 0.28 

CaO 14.04 3.45 

TiO2 0.13 0.10 

Cr2O3 0.02 0.002 

MnO 0.01 - 

Fe2O3 0.73 0.74 

ZnO 0.01 - 

Rb2O 0.005 - 

SrO 0.09 0.015 

ZrO2 0.03 - 

PbO 0.014 - 

Mn2O5 - 0.03 

LOI - 46.113 
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Table 2 depicts result of XRF analysis of Coca-Cola glass frits and magnesite. 

The result revealed that it belongs to SiO2- CaO-Na2O base glass composition system.  

Magnesite contained 39.90% MgO alongside other oxides. On the other hand, Figure 1 

shows result of XRD analysis of magnesite. According to the XRD result, magnesite 

contains 96.15% magnesite, 2.02% quartz and 1.83% dolomite. 

Position [°2Theta] (Cobalt (Co))
10 20 30 40 50 60 70

Counts

0

2000

4000

6000

 TUT_Magnasite

Magnesite 96.15 %

Quartz high 2.02 %

Dolomite 1.83 %

 Peak List

 Magnesite; C1 Mg1 O3

 Quartz high; O2 Si1

 Dolomite; C2 Ca1 Mg1 O6

 

Fig. 1. XRD pattern of magnesite used 

XRD analyses of the samples GC-1, GC-2, GC-3 and GC-4 are shown in Figures 

2 and 3. After sintering the appearance of wollastonite (CaSiO3), diopside 

(Ca,Mg(SiO3)2) and weak anorthite (CaAl2Si2O8) peaks can be seen. XRD results of 

glass heat-treated ceramic compacts suggest consecutive transformation of the parent 

glass into crystalline phases. Figure 4 shows the evolution of the GC-1 sample. The 

degree of crystallinity of formed phases and the composition of the residual glass was 

changed with temperature evolution. The X-ray pattern of the GC-1 sample obtained at 

700oC is still basically composed of an amorphous glassy phase and a few intensity 

peaks of wollastonite (CaSiO3) are observed. Further temperature increase to 800oC 

enhances the intensity of the wollastonite peaks. The X-ray pattern of the GC-2 sample 

obtained at 700oC is still basically composed of an amorphous glassy phase and a few 

intensity peaks of wollastonite (CaSiO3) were observed as well as weakly defined new 

phases of monoclinic diopside (CaMgSi2O6) and anorthite. It seems that diopside and 

anorthite peaks were more pronounced in the sample with higher magnesite content 

(Figure 3). Moreover, X-ray diffraction showed that diopside, weak anorthite and 

wollastonite were the main crystalline phases developed in the investigated glasses. 

Their portion depended on base composition. In the sample GC-1, wollastonite 

(CaSiO3) phase was crystallized. In the samples GC-2 to GC-4, the diopside and weak 

anorthite were also developed. Increase in the intensity of their lines was noticed. The 

increased intensities of diopside diffraction lines and their slight shift to higher 2θ 

values indicated a solid solution character. 



Gebi et al. - Sinter Recrystalization and Properties Evaluation of Glass-Ceramic … 289 

 

 

Fig. 2. X-ray diffraction patterns for: a) GC-1(-53µm, 700oC), b) GC-1(-53µm, 800oC), 

c) GC-2 (-75+53µm, 700oC), d) GC-2(-75+53µm, 700oC)  

 

Fig. 3. X-ray diffraction patterns for: a) GC-3(-75+53µm, 800oC), b) GC-3(-75+53µm, 

750oC), c) GC-4 (-75+53µm, 800oC), d) GC-4(-53µm, 750oC)  

The sequence of events during glass powder heat-treatment was as follows: (i) 

near the glass transition temperature (Tg), the parent glass fine particles acted as 

uniformly scattered nuclei; chrome also precipitated from the glass and formed 

nucleation points for the crystallization of wollastonite and diopside, and consequently 

induced the crystallization of the glasses. (ii) further heating led to an increase in the 

viscosity of the batch and promoted densification by viscous coalescence; (iii) around 
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700oC crystallization started, resulting in the precipitation of wollastonite. Increasing 

temperature improved the degree of crystallinity and densification, and a fully dense 

glass-ceramic material composed of wollastonite, weak anorthite, and diopside crystals 

plus some residual glassy phase was formed. Furthermore, it is believed that during the 

sintering process chrome precipitated from the glass and formed nucleation cites for the 

crystallization of wollastonite and diopside, and consequently induced the 

crystallization of the glasses as affirmed by Khater et al. [3].  

Thermo Gravimetric Analysis (TGA) 

The TGA analysis is a useful method to determine the optimal stabilization 

temperature [6]. TGA of Coca-Cola glass bottle was done in the temperature range of 

30-1000°C in order to find the crystallization temperature of different crystalline phases 

as shown in Figure 4. The total weight loss was observed after heating up to 750°C. 

Since the specimen was not fully dried, some physically bound water was present at the 

surface and in micro pores, which caused a subsequent loss of mass at the lowest 

temperature range, i.e., 50-400°C. This process is endothermic and is connected with 

decomposition of water vapors. Between 400-700°C the weight loss was slow and 

steady, which probably is connected to glass transition/transformation, and from 700-

750°C the weight loss was constant due to the onset of sintering/nucleation. The 

nucleation temperature of the crystal is a strong function of the heating rate as found by 

Durrani et al. [6]. It was observed that increasing the heating rate shifted the nucleation 

temperature to a higher value. 
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Fig. 4. TGA curve of the waste glass sample 

Scanning Electron Microscopy examination of the glass ceramic materials 

Figure 5 to 12 show the representative microstructure and morphology from GC-

1 to GC-4 samples. Two different morphologies: fine fibrous crystals assigned to 

wollastonite and diopside and tiny spherulites assigned to anorthite were observed. It 

was observed that for GC-1 sample (Figures 5 and 6) wollastonite is the main phase. 

However, as the percentage of magnesite increased fibrous growth of tiny diopside and 

appearance of tiny spherulites of anorthite was noticed, Figures 7-12. 
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Fig. 5. SEM image of GC-1(-53µm, 700oC), with fine texture of tiny wollastonite in 

residual glass matrix: a) x5000 b) x10000 

 

Fig. 6. SEM image of GC-1(-53µm, 800°C) with fibrous growth of wollastonite in 

residual glass matrix: a) x5000 b) x10000 
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Fig. 7. SEM image of GC-2(-75+53µm, 700oC) with fibrous growth of tiny diopside and 

wollastonite with appearance of tiny spherulites of anorthite. a) x5000 b) x10000 

 

Fig. 8. SEM image of GC-2(-75+53µm, 800°C) showing fibrous growth of tiny diopside 

and wollastonite with more appearance of tiny spherulites of anorthite. a) x5000 b) 

x10000 
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Fig. 9. SEM image of GC-3(-75+53µm, 800°C showing fibrous growth of tiny diopside 

and wollastonite with appearance of tiny spherulites of anorthite). a) x5000 b) x10000 

 

Fig. 10. SEM image of GC-3(-75+53µm, 750°C) showing a glassy phase of diopside 

and wollastonite with appearance of tiny spherulites of anorthite with network of solid 

materials (white) and little evidence of porosity (black). a) x5000 b) x10000 
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Fig. 11. SEM imageof GC-4(-75+53µm, 800°C) showing more fibrous growth of 

diopside and wollastonite with more appearance spherulites of anorthite. a) x5000 b) 

x5000 

 

Fig. 12. SEM image of GC-4(-53µm, 750°C) showing tiny diopside and wollastonite 

with appearance of tiny spherulites of anorthite and formation of a continous network of 

solid materials. a) x5000 b) x10000 

The morphology of the crystal phases present in Figures 10 and 12 was quite 

different to the morphology observed for the other glass ceramics. The crystal phases 

seen in the matrix of amorphous glass were confirmed by the XRD which might have 

the presence of phosphorus, although no phosphorus containing crystal phase was 

identified in the glass ceramic. This led to the conclusion that phosphorus must have 

remained in the amorphous glass. Treatment of dispersed iron-bearing raw materials and 
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modeling of the protection systems against air-pollution was present as Ca3(PO4)2 in the 

glass as there is no other indication from the data presented here.  

Physical properties evaluation of the glass ceramic materials 

Figures 13 to 16 show variation of density with different conditions of particle 

size and temperature for GC-1 to GC-4. As expected, slightly higher density values 

were obtained for samples processed from finer particle sizes and higher temperatures. 

It was concluded that sinterability depended on the temperature at which the 

crystallization started. Therefore, with increase in the crystallization temperature, the 

glassy phase had enough time for viscous flow which led to complete densification, 

which agrees with Fernandes et al. [7]. It is also observed that the maximum density of 

samples was obtained at about 800 °C. The measured density values for glass ceramics 

were increased with increasing magnesite content. This happened because the density 

depended on the type of phases as well as on the amount of each phase formed in the 

glass ceramics. 

Porosity or void fraction is a measure of void spaces in a material, and is given as 

the ratio of the volume of all pores in a material to the total volume. Porosity is the 

result of gas entrapment in the solidifying glass ceramic materials. Figures 13 to 16 

show variation of porosity with different conditions of particle size and temperature for 

GC-1 to GC-4. In most cases the porosity decreased with increasing temperature and 

decreasing particle size. This probably was because the use of fine particle sizes and 

high temperature promoted sintering consequently eliminating porosity. 

As far as sintering is concerned, the experimental results showed that 

densification of sample compacts started at low temperatures (700 °C), advanced at 

higher temperatures, likely by viscous flow sintering, and was almost completed at 800 

°C. On the other hand, crystallization started at temperatures below 700 °C and the 

crystallinity increases at higher temperatures, resulting in fully dense glass ceramic 

materials. Mirhadi and Mehdikhani, [8] proposed that the crystallization of diopside 

may cause formation of additional porosity since there is a significant difference 

between the density of diopisde in glassy (2.75 g/cm3) and crystal state (3.27 g/cm3). 

The difference of density is negligible: in the case of wollastonite (2.87 g/cm3 and 2.92 

g/cm3 for the glass and the crystals, respectively). Furthermore, SEM micrographs of 

samples sintered at 800 oC showed that the samples are without surface porosity. This 

means that the increase of the viscous flow at higher temperatures (800 °C) was enough 

to eliminate the porosity that formed due to the crystallization of diopside. 
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Fig. 13. Variation of density and porosity with different conditions of particle size and 

temperature of GC-1 samples. 

 

Fig. 14. Variation of density and porosity with different conditions of particle size and 

temperature for GC-2 samples. 
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Fig. 15. Variation of density and porosity with different conditions of particle size and 

temperature for GC-3 samples. 

 

Fig. 16. Variation of density and porosity with different conditions of particle size and 

temperature for GC-4 samples. 

Flexural strength and hardness behavior of the glass ceramic  

Figures 17-20 show variation of flexural strength with different conditions of 

particle size and temperature for GC-1 to GC-4. The bending strength of the samples 

increased continuously up to the optimum sintering temperature, i.e. 800 °C. Perhaps 

the lower densities of the samples were responsible for the lower bending strength. The 

bending strength of the samples increased with increasing magnesite content, this is 

because compared with wollastonite, diopside belongs to monoclinic system and has 
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better mechanical properties and chemical stability. Both phases are inosilicates, which 

are well known for high strength and fracture toughness. This is due to the 

unidirectional backbone of tetrahedral silica linkage which often manifests itself as 

elongated acicular or rod like crystals providing reinforcement to the glass ceramic. 

Thus, Khater [4] proposed that diopside is a preferable crystalline phase since it results 

in stronger materials than glass ceramics based on wollastonite. Presented SEM images 

confirmed the crystalline nature of the samples and also interlocking fibrous dendritic 

sheaves and spherulites which help to enhance fracture toughness as affirmed by 

Hölland and Beall [2].  

Figures 17-20, show variation of hardness with different conditions of particle 

size and temperature for GC-1 to GC-4. Vickers hardness numbers increased as the 

diopside-anorthite eutectic or magnesite contents increase. This indicates the high 

abrasion resistance of the materials which resulted to their suitability for many 

applications under aggressive conditions.  

 

Fig. 17. Variation of hardness and flexural strength with different conditions of particle 

size and temperature for GC-1 samples. 
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Fig.18. Variation of hardness and flexural strength with different conditions of particle 

size and temperature for GC-2samples. 

 

Fig. 19. Variation of hardness and flexural strength with different conditions of particle 

size and temperature for GC-3samples. 
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Fig. 20. Variation of hardness and flexural strength with different conditions of particle 

size (µm) and temperature (°C) for GC-4 sample. 

Conclusions 
A glass ceramic using waste coca cola bottle and magnesite was successfully 

developed and characterized. Based on the results it can be concluded that Coca Cola 

glass bottle can be used to successfully produce glass ceramic materials with good 

properties. However, the resulting glass ceramic materials composed mainly of 

wollastonite, diopside and anorthite phases depend on composition. Additionally, 

modification of the glass bottle with magnesite enhanced the properties of the obtained 

glass ceramics due to the precipitation of more diopside and anorthite phases. 

Furthermore, the density of samples increased with increasing sintering temperature and 

decreasing particle size, while the porosity was minimal and it decreases with increasing 

sintering temperature and decreasing particle size. Thus, the obtained glass ceramic 

materials have appreciable hardness and flexural strength. 
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