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Abstract 
In this study, based on the three-dimensional theory of elasticity, free vibration 

characteristics of nanocomposite cylindrical panels reinforced by single-walled carbon 
nanotubes are considered. The carbon nanotube reinforced (CNTRC) cylindrical panels 
have smooth variation of carbon nanotube (CNT) fraction in the radial direction and the 
material properties are estimated by the extended rule of mixture. Suitable displacement 
functions that identically satisfy the boundary conditions at the simply supported edges 
are used to reduce the equilibrium equations to a set of coupled ordinary differential 
equations with variable coefficients, which can be solved by a generalized differential 
quadrature (GDQ) method. The results show that the kind of distribution and volume 
fraction of CNT have a significant effect on the normalized natural frequency. 
Keywords: free vibrations, functionally graded materials (FGMs), nanocomposite, 
three-dimensional elasticity solution, cylindrical panel. 

Introduction 
The biggest specification of carbon nanotubes, which distinguishes them from 

the rest of the materials, is the abnormal mechanical, thermal, and electrical properties, 
and even more importantly their extraordinary property of fracture strength [1-5]. Also, 
all the data gathered from the experiments and simulations indicate that the direction of 
the nanotubes embedded in the matrix plays an important role in the determination of 
the mechanical properties of the reinforced material [6-8]. Fidelus et al. [9] investigated 
the thermo-mechanical properties of the nanocomposite, based on low volume fraction 
and random orientation of the single-walled carbon nanotubes. Han et al. [10] simulated 
the mechanical properties of polymer/carbon nanotube composites, using the molecular 
dynamics method and also investigated the effect of volume fraction of carbon 
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nanotubes on the mechanical properties of the nanocomposite. As it is stated in many of 
the researches performed, functionally graded materials (FGMs) are materials whose 
properties vary continuously through the thickness direction from one surface to the 
other one. Using the concept of FGMs, Shen [11, 12] showed that the functionally 
graded distribution of nanotube in the matrix improves the material properties. In these 
studies, the investigation of the non-linear bending of a functionally graded plate 
reinforced by carbon nanotubes under uniform and sinusoidal loading in a thermal 
environment was performed, and further the buckling of a cylindrical shell reinforced 
with carbon nanotubes was carried out under axial compressive loading in a thermal 
environment, and it was shown that the linear functionally grading of the material, 
increases the buckling load. Sobhani et al. [13] presented a three dimensional elasticity 
solution for the free vibration of a functionally graded cylindrical panel, and showed 
their results for a functionally grad cylindrical panel with random volume fraction and 
fiber angles along the thickness direction. Static and free vibration analyses of 
functionally graded structures have been investigated in many papers [14- 21]. The 
solution presented in the current paper is based on the numerical method of generalized 
differential quadrature, which leads to an eigenvalue problem. The convergence speed 
of this method is very high and some sample points are enough to reach an answer with 
a reasonably high accuracy. Tornabene et al. [14] also used the differential quadrature 
method for the free vibration analysis of a parabolic shell. In this paper, the free 
vibrations of a functionally graded cylindrical panel reinforced by carbon nanotubes are 
investigated, using the differential quadrature method. The material properties vary 
through the thickness direction, and are estimated by the micromechanical model. Since 
the micromechanical equations cannot distinguish the difference between the nano and 
micro scales, as a result in order to solve this problem, the effectiveness coefficient of 
(η) has been introduced, which is obtained from the compatibility of the results 
achieved from the extended rule of mixture, with the results achieved from the 
molecular dynamics method. The parametric study of the recent study is performed so 
as to show the effect of different distribution kinds of carbon nanotubes, including both 
symmetric and non-symmetric geometries, volume fraction of the nanotube, and 
different geometrical parameters on the free vibrations of the functionally graded 
cylindrical panel. 

Problem Discussion 
Consider the cylindrical panel shown in figure 1, with a finite length in the 

cylindrical coordinate system of r, θ, z, where r, θ, and z define the radial, 
circumferential, and axial directions, respectively. Properties of the material are a 
function of the radial coordinate the panel, in a way that the variations of the volume 
fraction of the nanotubes in the panel, happen to vary in four fashions as below, 
according to figure 2: 

For kind  V  *2 ( )i
cn cn

r rV V
h
−

=       (1-a) 

For kind  Λ   *2 ( )o
cn cn

r rV V
h
−

=       (1-b) 
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For kind  X  *4 | |cn cn
R rV V

H
−

=      (1- c) 

Where in the above relations, CNV indicates the distribution kind of the carbon 
nanotubes in the cylindrical panel. Also, it is necessary to mention that for the uniform 
distribution in the panel, one must have *

cn cnV V= , where: 

( )
2

r ri oR +
=   *

1( )

m
Vcn m cn cn cnw

ρ

ρ ρ ρ
=

−+ −
          (2) 

Wherein, CNw is the weight percentage of the carbon nanotube, and , CNmρ ρ are 
the density of the polymeric matrix and carbon nanotube, respectively.  

 
Fig. 1. Geometry of the cylindrical panel. 

 
According to the generalized rule of mixtures, the effective Young's modulus and 

the effective shear modus are defined as follows [11]: 
11 1 11               cn m

cn mE V E V Eη= +  (3) 
2
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cn m
cn m

V V
E E E
η

= +
 (4) 
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cn m
cn mv V v V v= +  (6) 

cn m
cn mV Vρ ρ ρ= +  (7) 

Wherein, 11
cnE , 22

cnE  ,
12

cnG , cnv  are the modulus of elasticity, shear modulus, 

Poisson's ratio, and density of carbon nanotube, and mE , mG , mv mو ρ  , correspond to 
properties of the matrix. ( 1,2,3)j jη = is the effectiveness coefficient of the carbon 
nanotube, which is derived from the compatibility of the answers achieved from the 
extended rule of mixture, and the answers achieved from the molecular dynamics 
method. 
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b: FG V−   a: UD  

  

d:  FG-X c: FG − Λ   

Fig. 2.Distribution kind of carbon nanotube in the panel, a: Unidirectional (UD) form, 
b: V form, c: Λ form, and d: X form. 

Governing motion equations 
The governing three dimensional motion equations of the problem are as follows: 
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The stress-displacement relations in the cylindrical coordinate system are defined 
as follows: 
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Where ru , uθ , and uz are the radial, circumferential, and axial displacements, 
respectively. Boundary conditions for the panel are [23]: 

,r a b=                                 0r rz rθσ τ τ= = =  (12) 

0,θ = Φ                                 0r zu θ θσ τ= = =  (13) 

Semi Analytical Solution 
The general relations for the displacement components, which satisfy the 

boundary conditions, are as follows: 

1
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r m r
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u U r e ωβ θ
∞

=
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Where, m is the number of the waves in the circumferential direction of the 
cylindrical panel. The differential quadrature method was first used by Bellman and 
Casti in 1971, as a numerical method to solve the partial differential equations [24]. In 
this method, if a grid of N×1points of a physical area are considered in a way that N be 
the number of the grid points along the x axis, then the differential quadrature rules for 
the derivatives of a supposed function like f(x) are stated as follows [25]: 
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Wherein, 
( )n
ikc is the weight coefficient related to the x-direction. According to 

the generalized quadrature method, the weight coefficients are calculated as follows 
[24]: 
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The distribution kind of the grid points, which is generally used in papers, is in 
the normalized shape in the range of [0, 1], and is stated as follows [26]: 

Sample points of Chebyshev-Gauss-Lobatto  ) (C-G-L) 
1 11 cos 1,2, ,
2 1i

ix i N
N
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K  (21) 

Now, in this stage, by applying the generalized differential quadrature method, 
equations (8) to (10) are made discrete. As a result, in each point of the ri grid, with 
i=2,…, N-1, the motion equation of (8) after becoming discrete is expressed as follows: 
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Where, (1)
ikc  and (2)

ikc are first and second order weight coefficients, respectively. 
Similarly, by applying the generalized differential quadrature method at the 

boundary conditions, the equations are made discrete as follows. Therefore, for the 
boundary conditions at r=a, we have: 
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Similarly, for the boundary conditions at the value of r=b are achieved as above.  
The motion equations after getting discrete are rewritten in the matrix form as 
follows: 
[ ]{ } [ ]{ } { }2

db b dd d dA U A U Uρω+ = −  (26) 

Similarly, the boundary conditions can also be written as follows: 
[ ]{ } [ ]{ } { }0bb b bd dA U A U+ =  (27) 

By substituting the relation (27) into relation (26), the eigenvalue problem is 
resulted with the following general form: 

[ ]( ){ } { }2 [ ] 0dA I Uρω+ =  (28) 

Where: 
[ ] [ ] [ ][ ] [ ]1

dd db bb bdA A A A A−= −  (29) 

With this sequence, the system of the eigenvalue equations is achieved, and by 
using MATLAB software, the equation (28) is solved, and later the appropriate program 
for deriving the natural frequencies of the infinite functionally graded cylindrical panel 
reinforced by carbon nanotubes has been developed. 

Verification 
As it was stated in the previous section, the differential quadrature method is a 

numerical method; therefore the correctness of the results must be verified first. For 
verification purposes, the results of the present study have been compared with the 
results of the study performed by Sobhani et al. [21] on an orthotropic cylindrical panel, 
with an infinite length, for different angle values of the panel inlet )Φ( , and the index of 
power distribution of p, and the results achieved are presented in table (1). As it is 
perceived, there is a good compatibility between the results. 
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Table 1 .Comparison of the dimensionless frequency parameter i

cu
r cuE

ρωΩ = for the 

functionally graded orthotropic cylindrical panel, with an infinite length (vcu= 0.28, ρw 
=19300 kg/m3, Ew= 400 Gpa, vcu = 0.31, ρcu= 8960 kg/m3, Ecu= 115 Gpa, S=10, m=1). 

Φ P=0 P=0.7 P=1 P=10 P=20 
π/6      
a 1.1754 1.1025 1.0833 1.0805 1.0651 
[21] 1.1572 1.0863 1.0485 1.0371 1.0049 
π/3      
a 0.2719 0.2545 0.2427 0.2436 0.2397 
[21] 0.2674 0.2421 0.2377 0.2353 0.2301 
π/2      
 a 0.969 0.0907 0.0890 0.0905 0.0880 
[21] 0.0946 0.0866 0.0847 0.0840 0.0822 

a: Present+ study. 

Properties of the material 
Properties of the carbon nanotube (10, 10) and its polymer are presented in table 

2, according to reference [10]. The name of the polymer used is Methyl methacrylate, 
which is supposed to be isotropic. The dimensionless frequency parameter of Ω is 

defined with the 
1 1

1 0
c n

m n c nh
E
ρωΩ = relation, where 

11,cn cnEρ are the density, and 

modulus of elasticity of the nanotube, respectively, and mnω is the natural frequency of 
the cylindrical panel. 

Table 2 .Mechanical properties of the matrix and nanotube. 

NanotubeMatrixMechanical 
Properties 

600 GPa 2.5 GPa E11 
10 GPa 2.5 GPa E22 

1400 kg/m3  1150 kg/m3 ρ 
0.19 0.34 υ 

Investigation of the convergence of the differential quadrature method 
In figure (3), convergence and accuracy of the base frequency parameter, 

according to the number of the sample points along the radius of the functionally graded 
panel reinforced by nanotubes, have been shown for different values of S. By increasing 
the number of points, the diagram becomes convergent, and also variations of the 
number of points will not have any effect on the accuracy of the answers. In figure (3), 
in order to show the accuracy and convergence of the semi-analytical method used, 
variations of the base frequency parameter of the functionally graded orthotropic panel 
reinforced by nanotubes have been presented for different values of S. It is necessary to 
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be stated that, in the solution based on the three dimensional elasticity equations, all the 
boundary conditions are simply supported. 

 
Fig. 3. Convergence and stability of the base frequency parameter of the FG panel 

reinforced by V form nanotubes for different values of S (m= 1, Φ= π/6). 
 

Effectiveness coefficient of the carbon nanotube 
Because of the van der Waals bond between carbon nanotube and polymer, 

transfer of load between the nanotube and the polymer phase does not fully take place, 
and since the rule of mixtures is only applicable to continuum environments, it is not 
possible to directly use this rule. Also, micromechanical relations like the rule of 
mixtures are not capable of considering the difference between the nano and micro 
scales; therefore Shen used the effectiveness coefficient ( )jη to overcome this problem 

for the carbon nanotubes [11, 12]. Values of  jη  for different volume fractions of *
CNV  

have been derived from the analogy of the modulus of elasticity between composites 
reinforced with carbon nanotubes, being achieved from the molecular dynamics 
simulation, using the predictions done by means of the expanded rule of mixtures. In 
table (3), different values of  jη  have been presented for different values of *

CNV . Shen 
considered this relation to exist between the effectiveness coefficients for carbon 
nanotubes: 3 20.7η η= . 

Table 3 .Comparison of the Young's modulus of nanocomposites reinforced by single 
walled carbon nanotubes (10, 10) at T0=300 [11]. 

*V cn  

Molecular 
dynamics [10]   Extended rule of 

mixtures    

E11(GPa) E22(GPa)  E11(GPa) 1
η E22(GPa) 2

η
 

0.12 94.6 2.9  94.78 1.2833 2.9 1.0556 
0.17 138.9 4.9  138.68 1.3414 4.9 1.7101 
0.28 224.2 5.5  224.50 1.3238 5.5 1.7380 

 



212 Metall. Mater. Eng. Vol 19 (3) 2013 p. 203-216 

As it is seen, the values of the effectiveness coefficient stated in the above table, 
are achieved from the comparisons made between the studies performed on carbon 
nanotubes (10, 10) by Shen [11] and references [6, 10]. 

Investigation of the effect of different parameters on frequency parameter 
In this section, the effects of the nominator of the transverse wave, m, on the 

frequency parameter are investigated. In figure (4a), variations of the frequency 
parameter versus the number of circumferential waves of the panel uniformly reinforced 
by carbon nanotubes, have been presented for different volume fractions of the 
nanotube. This figure shows that the increase of the number of transverse waves, and 
also the increase of the volume fraction of the nanotube, increases the base frequency 
parameter. It is necessary to be stated that, the number of the sample points is chosen to 
be N=17, and the volume fraction of the nanotube is supposed to be *

cnV =0.28 in all the 
figures. 
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Fig. 4 .Variations of the frequency parameter versus the number of circumferential 
waves for: (a) different volume fractions of the nanotube, (b) different inlet angles of the 

panel, (c) different kinds of nanotube distribution in the panel (S= 100, Φ= π/6). 
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In figure (4b), variations of the frequency parameter versus number of 
circumferential waves have been shown for different inlet angles of the cylindrical 
panel, and it is seen that increase of the size of the inlet of the panel, decreases the 
frequency parameter, and also, the increase of the number of circumferential waves, 
increases the frequency parameter of the panel. Nanotube distribution in this figure is of 
uniform shape. In figure (4c), variations of the frequency parameter, versus number of 
circumferential waves have been shown for different kinds of the nanotube distribution 
in the cylindrical panel, and as it is was stated earlier, and as it is observed here in this 
figure, the highest value of the frequency parameter for  the nanotube distribution exists 
for the X form. 

In figure (5), the base frequency parameter of the panel reinforced by carbon 
nanotubes has been shown in terms of the number of transverse waves and different 
values of S parameter. Figure (5) indicates the fact that, necessarily by decreasing the 
radius to thickness ratio, S, and increasing the number of waves; the maximum value of 
the base frequency is not achieved. For better understanding of this issue, a three 
dimensional diagram of the frequency parameter has been presented, in terms of the 
number of the transverse waves, the radius to thickness ratio, S, for different inlet angles 
of the panel, and also for the uniform  nanotube distribution.  

2
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Fig. 5 .Variations of the frequency parameter in terms of circumferential waves (m) and 
parameter S (Φ= π/6). 

Now, the effect of the middle radius to thickness ratio of the panel, S, on the base 
frequency parameter is investigated. In figure (6a), the effects of the middle radius to 
thickness ratio of the panel, S, on the dimensionless base frequency parameter of the FG 
cylindrical panel uniformly reinforced by carbon nanotubes has been shown for 
different volume fractions. By the increase of the volume fraction of the nanotube, for 
different values of the S ratio, the frequency parameter increases, and as the S ratio 
increases, the frequency parameter decreases. The effect of different kinds of nanotube 
distribution on the base frequency parameter of the FG orthotropic cylindrical panel 
with infinite length, in terms of the S parameter, has been shown in figure (6b). In this 
figure, it is shown that the kind of nanotube distribution in the FG cylindrical panel with 
infinite length, for the variations of the S ratio, has little effect on the frequency 
parameter. The effect of inlet angle of panel on the base frequency parameter of the FG 
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cylindrical panel reinforced by carbon nanotubes, in terms of the S parameter, has been 
presented in figure (6c). In this figure, nanotube distribution in the cylindrical panel is 
considered to be of V form. As it is seen, by the increase of the S ratio and the inlet 
angle of panel, the base frequency parameter is decreased.  

Conclusion 
In this paper, the vibration analysis of a FG polymeric cylindrical panel 

reinforced by carbon nanotubes has been investigated, based on the three dimensional 
elasticity theory, using the extended differential quadrature method. 

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

S

Ω

a

 

 

V*
cn

=0.12

V*
cn

=0.17

V*
cn

=0.28

 
1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

S

Ω

b

 

 

FG-V

FG-Λ
FG-X

UD

 

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

S

Ω

c

 

 

Φ=30°
Φ=60°
Φ=90°
Φ=360°

 
Fig. 6. Variations of the frequency parameter versus S for: (a) different volume 
fractions of nanotube, (b) different kinds of nanotube in the cylindrical panel, 

(c) different inlet angels of the panel. 

Gradual change of material properties is considered as the linear volume fraction, 
at the constant volume percentage of the carbon nanotube. Since, so far no studies have 
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been performed on the vibrations of the FG cylindrical panel reinforced by carbon 
nanotubes, this study is aimed at understanding the vibration behavior of these new set 
of materials. In the current study, variations of the volume fraction of the carbon 
nanotube are considered along the radial direction, and the properties of the materials 
are achieved from the micromechanical model of the materials, but the micromechanical 
model of the materials is not capable of distinguishing the difference between nano and 
micro scales, therefore, in order to cope with this problem, an effectiveness coefficient 
of η is used. The effect of the volume fraction of the carbon nanotube, different 
boundary conditions, and also kinds of the nanotube distribution in the FG cylindrical 
panel reinforced by carbon nanotubes have been investigated in this article.  

Reference 
[1] H. Dai, 2002. Carbon nanotubes: opportunities and challenges, Surf. Sci. 500: 

218-241. 
[2] I. Kang, Y. Heung, J. Kim, J. Lee, R. Gollapudi, S. Subramaniam, S. 

Narasimhadevara, D. Hurd, G. Kirkera, V. Shanov, M. Schulz, D. Shi, J. Boerio, 
S. Mall, D. Ruggles-Wren, 2006. Introduction to carbon nanotube and nanofiber 
smart materials, Compos. Part B, 37: 382-394. 

[3] K.T. Lau, C. Gu, D. Hui, 2006. A critical review on nanotube and 
nanotube/nanoclay related polymer composite materials, Compos. Part B, 
37:425-436. 

[4] Thostenson ET, Ren ZF, Chou TW, 2001. Advances in the science and 
technology of carbon nanotubes and their composites: a review. Compos Sci 
Technol, 61:1899-1912. 

[5] Odegard GM, Gates TS, Wise KE, Park C, Siochi EJ, 2003. Constitutive 
modelling of nanotube-reinforced polymer composites, Compos Sci Technol, 
63:1671-1687. 

[6] M. Griebel, J. Hamaekers, 2004. Molecular dynamic simulations of the elastic 
moduli of polymer-carbon nanotube composites, Comput. Meth. Appl. Mech. 
Eng,193: 1773-1788. 

[7] Cadek M, Coleman JN, Barron V, Hedicke K, Blau WJ, 2002. Morphological 
and mechanical properties of carbon-nanotube-reinforced semicrystalline and 
amorphous polymer composites. Appl Phys Lett; 81: 5123-5125. 

[8] Thostenson ET, Chou TW, 2003. On the elastic properties of carbon nanotube-
based composites. Modeling and characterization. J Phys-Appl Phys, 36: 573-
582. 

[9] J. D. Fidelus, E. Wiesel, F. H. Gojny, K. Schulte, H. D. Wagner, 2005. Thermo-
mechanical properties of randomly oriented carbon/epoxy nanocomposites. 
Compos. Part A, 36: 1555-1561. 

[10] Y. Han, J. Elliott, 2007. Molecular dynamics simulations of the elastic properties 
of polymer/carbon nanotube composites. Comput. Mater. Sci, 39: 315-323. 

[11] H. S. Shen, 2009. Nonlinear bending of functionally graded carbon nanotube 
reinforced composite plates in thermal environments. Compos. Struct, 91: 9-19. 

[12] H. S. Shen, 2011. Postbuckling of nanotube-reinforced composite cylindrical 
shells in thermal environments, Part I: Axially-loaded shells, Postbuckling of 
nanotube-reinforced composite cylindrical shells in thermal environments, Part I: 
Axially-loaded shells, Compos. Struct, 93: 2096-2108. 



216 Metall. Mater. Eng. Vol 19 (3) 2013 p. 203-216 

[13] B. Sobhani Aragh, M. H. Yas, 2010. Static and free vibration analyses of 
continuously graded fiber-reinforced cylindrical shells using generalized power-
law distribution.  Acta Mech, 215: 155-173. 

[14] F. Tornabene, E. Viola, 2009. Free vibrations of four- parameter functionally 
graded parabolic panels and shells of revolution. European Journal of Mechanics 
A/Solids, 28: 991-1013. 

[15] L. Li, R. Kettle, 2002. Nonlinear bending response and buckling of ring-stiffened 
cylindrical shells under pure bending. International Journal of Solids and 
Structures, 39: 765-781.  

[16] A. Alibeigloo, V. Nouri, 2010. Static analysis of functionally graded cylindrical 
shell with piezoelectric layers using differential quadrature method. Composite 
Structures, 92: 1775-1785. 

[17] D. Redekop, 2006. Three-dimensional free vibration analysis of inhomogeneous 
thick orthotropic shells of revolution using differential quadrature. Journal of 
Sound and Vibration, 291: 1029-1040. 

[18] S.C. Pradhan, C.T. Loy, K.Y. Lam, J.N. Reddy, 2000. Vibration characteristics 
of functionally graded cylindrical shells under various boundary conditions. 
Applied Acoustics, 61: 111-129. 

[19] F. Pellicano, 2003. Vibrations of circular cylindrical shells: Theory and 
experiments. Journal of Sound and Vibration, 303:154-170. 

[20] W. Jiang, D. Redekop, 2003. Static and vibration analysis of orthotropic toroidal 
shells of variable thickness by differential quadrature. Thin-Walled Structures, 
41: 461-478. 

[21] B. Sobhani Aragh, M. H. Yas, 2010. Three-dimensional free vibration of 
functionally graded fiber orientation and volume fraction cylindrical panels. 
Mater. Design, 31, 4543-4552. 

[22] J. N. Reddy, 2004. Mechanics of laminated composite plates and shells. New 
York, CRC Press. 

[23] A. Alibeigloo and M. Shakeri, 2005. Dynamic Analysis of Orthotropic 
Laminated Cylindrical Panels. Mechanics of Advanced Materials and Structures, 
12: 67-75. 

[24] R. E. Bellman and J. Casti, 1971. Differential quadrature and long-term 
integration. Mathematical Analysis Application, 34: 235-238. 

[25] C. Shu and B. E. Richards, 1992. Application of generalized differential 
quadrature to solve two-dimensional incompressible Navier-Stokes equations. 
Numerical Methods Fluids, 15: 791-798. 

[26] F. Tornabene and E.Viola, 2008. 2D solution for free vibration of parabolic 
shells using generalized differential quadrature method. European Journal of 
Mechanics A/solids, 27 (6): 1001-1025. 


