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Abstract: This research investigates using a Kalman filter to 

enhance the mobile robot localization. Accurate localization is 

crucial for effective steering and successful mission completion in 

the autonomous robotic systems. The Traditional methods 

encounter problems comes from the noise and the errors in sensor 

measurements, resulting in the failure in performance. The Kalman 

filter is a mathematical method that may guess the state of the 

dynamic system depend upon a sequence of noisy and the 

incomplete explanations. It is a consistent technique to address 

localization issues. The Kalman filter, a method for the iterative 

state estimation, significantly improves the localization precision of 

a two-wheeled (2WD) robot. The experimental outcomes display 

that the filter decreases uncertainty and enhance the robot's ability 

to cross the complex conditions. A Simulink application permits fast 

modeling and simulation of the robot's dynamic performance, 

giving valuable visions into perfect filter limitations. This research 

aims to improve the robotics arena by indicating a dependable 

method for the localization, which is vital for an autonomous 

steering and the mission execution. The numerical analysis has a 

significantly improves the robot's capacity to steer in the noisy 

environments, rendering it a possible explanation for the real-time 

applications in the dynamic situations.  
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1. Introduction 

 

In recent years, researchers have been very interested in the fields of the localization and 

navigation for autonomous robots. Mobile robots are highly capable of locating with high 

accuracy and effectively navigating their surroundings which is essential for enabling 

independent and intelligent robotic systems.  

The Localization problem is a major challenge for mobile robots due to their effective and 

critical role as a fundamental requirement for the high-level tasks [1]. Furthermore, the mobile 

robot localization frequently encounters accuracy and precision issues, it is commonly referred 

to as position tracking or position estimation [2][3] [4].  

One of the most important problems facing robots is positioning, which requires an actual 

estimate of the robots situation. Therefore, it requires combining the data acquired by different 

[5]. To obtain high accuracy in the representation of the position of the robot, an integrated and 

decisive process must be available to overcome the uncertainty. The state of the robot is 

estimated by the comprehensive analysis of the sensory data processed, collected and then 

integrated by the sensors of the robot when executing in the case of non-contact with the 

Kalman filter [6][4]. There is a great challenge in locating the mobile robot, and in turn it faces 

obstacles in closed environment conditions such as internal data, so it is necessary to focus on 



508                                                                                  Metall. Mater. Eng. Vol 30 (4) 2024 p. 507-516 

the importance of determining the flow line or route of the robot. Positioning is considered as 

a key milestone in mobile robot navigation, as it is a key element that requires the combination 

of data processing or information related to positioning and representation as well as the 

surrounding environment. Therefore, the problem of robot navigation involves three main 

factors (self-positioning, building maps, and finally route planning [7] [8]. 

The accuracy of sensors employed in mobile robot localization can be influenced by multiple 

factors, such as internal sensor interference and external environmental noise. These errors can 

have a substantial impact on the reliability and effectiveness of the localization process [9][10]. 

To ease these challenges and improve mobile robot localization, filtering methods are 

commonly employed. Among the various factors that influence the performance of robotic 

systems, Kalman filters have proven to be effective in addressing uncertainties in multiple 

aspects such as robot localization, navigation, following, tracking, motion control, estimation, 

and prediction [11].  

Over time, numerous variations of Kalman filters have been developed to cater to specific 

requirements and scenarios. Accordingly, over the past 30 years, extended Kalman filters (EKF) 

and unscented Kalman filters (UKF) have emerged as popular variations of the traditional 

Kalman filter, demonstrating their capability to solve various localization problems. These 

filters have found applications in diverse areas such as target tracking, localization, mapping, 

and navigation [12][13]. The Kalman Filter has several applications such as tracking moving 

objects and predicting stock prices. The algorithm is named after Rudolf Kalman, a Hungarian-

American mathematician and electrical engineer, who first proposed it in 1960 [4] [14]. 

Kalman Filter is a mathematical algorithm used for data filtering, smoothing, and prediction in 

various fields such as engineering, finance, and robotics. It works in linear systems [15]. It is a 

recursive algorithm that uses a series of measurements over time to estimate the state of a 

system and then uses this estimate to make predictions about the future state [16].  The Kalman 

filter algorithm is efficient and most widely used due to its ability to handle the noisy 

measurements and adapt to changes in the system being measured. 

Since the introduction of Kalman filtering, the term "filter" has come to signify more than just 

the process of separating the constituent parts of a mixture. In the context of Kalman filtering, 

the term now encompasses the solution of an inversion problem. These involve understanding 

how measurable variables represent functions of the primary interest variables. Kalman 

filtering, in essence, performs an inversion of this functional relationship, estimating the 

independent variables as inverted functions of the dependent variables[18]. Moreover, the 

variables of interest can exhibit dynamic behaviour with only partially predictable dynamics. 

According to[19] [20] [21], Kalman filtering finds frequent applications not only in state 

estimation but also in forecasting various system applications, such as weather prediction, stock 

market analysis, and more. The versatility of Kalman filtering extends beyond engineering 

domains, as it has also been employed in non-engineering applications like short-term 

forecasting and the analysis of life lengths derived from dose-response tests in recent years. 

Moreover,[22] emphasizes that the Kalman filter holds significant importance as it can adapt 

itself to nonstationary environments. Furthermore, as mentioned in [19], the Kalman filter 

offers support for estimations of past, present, and future states, even in cases where the exact 

nature of the modelled system is unknown. Through a set of mathematical equations, the 

Kalman filter provides an efficient computational approach to estimating the state of a process 

while minimizing the error [23][24]. 

As stated in [25], some systems can only be adequately represented with finite parameters. 

Recognizing this limitation, R.E. Kalman developed an optimal state estimator, the Kalman 

filter, specifically designed for linear estimation of dynamic systems utilizing the state space 

concept. Accordingly, the Kalman filter exhibits remarkable capabilities in several respects. It 

serves as an optimal observer, generating estimates of the system states that are unbiased and 

have minimum variance. This means that, on average, the error between the Kalman filter's 
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estimate and the true state of the system is expected to be zero, and the expected value of the 

squared error between the actual and estimated states is minimized. Kalman filter is regarded 

as an efficient recursive filter algorithm that plays a crucial role in estimating the state of a 

dynamic system based on a sequence of noisy measurements [25][26]. It can be a sequential 

minimum mean square error (MSE) estimator that considers the additive noise present in the 

measurements and estimates the covariance of the estimate can be seen as a sequential minimum 

mean square error (MSE) estimator that takes into account the additive noise present in the 

measurements, along with estimating the covariance of the estimate [4]. This paper presents the 

implementation of the Kalman filter to enhance mobile robot localization to estimate mobile 

robot location using Simulink. The rest of this paper is organized as follows: Methodology, 

which contains the Kalman filter algorithm and Kalman filter modelling in Section 2. Section 

3 discusses the Kalman filter using the Simulink program, the limitations of the Kalman filter 

algorithm, and the advantages of the Kalman filter in results and discussions. Section 4 presents 

the conclusion of this work. 

 

2. Methodology  

 

2.1   Kalman Filter Algorithm 

The Kalman filter is an iterative algorithm that updates its estimate of the system state as new 

data becomes available and is commonly used in many different applications, such as 

navigation, control systems, and signal processing [22]. 

The Kalman Filter algorithm flowchart is depicted in Figure 1. This algorithm encompasses a 

series of steps that facilitate the estimation and prediction of system states. The key steps of the 

Kalman filter can be summarized as follows: The process commences with the initialization 

phase. During this step, the initial values for the state vector, denoted as x0, and the error 

covariance matrix, denoted as P0, are set. Following the initialization phase, the Kalman Filter 

algorithm proceeds to calculate the predicted values based on either the initialized values (at 

the first time step) or the previously estimated values. Utilizing these predicted values obtained 

in the previous step, the Kalman gain (K) is computed. At this point, a new measurement 

becomes available, and the Kalman gain is recalculated to incorporate this new information. 

The current step involves the computation of the estimated value, considering the predicted 

values and the Kalman gain.  

These steps are as follows:  

Initialization: The algorithm starts with an initial estimate of the system state and its covariance 

matrix, which represents the uncertainty in the estimate. 

Prediction: The Kalman filter forecasts the upcoming state of the system depend upon the 

existing state guess and the system model. The prediction moreover contains a guess of the 

covariance matrix of the prediction error. 

Update Measurement: Based on the recent measurement and the anticipated measurement from 

the system model, the Kalman filter modifies the state estimate. The forecast and measurement 

are averaged using a weighted method in this update; the weights are determined by the degree 

of uncertainty in the prediction and measurement. Additionally, upon obtaining a new 

measurement, the estimate of the state and covariance matrices is updated. Furthermore, the 

update process computes the Kalman gain as a weighted sum of the measurement and the 

anticipated state by using the observation model. Therefore, in order to modify the anticipated 

state in light of the new measurement data, the Kalman gain is essential. The estimate of the 

state is improved by adding the measurement using the Kalman gain. In addition, taking into 

account the integration of the new measurement data, the covariance matrix is adjusted to reflect 

the decreased uncertainty in the estimate[27] [28]..  
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Repeat: Every time a new measurement is obtained, the prediction and update procedures are 

performed recursively, updating the state and covariance matrices in light of the new data [22] 

[25].  

The formulations of Kalman filter algorithm are as follow: 

Initialization:  
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Figure 1. Kalman filter algorithm flowchart 

 

Generally, the Kalman filter reduces the mean square error, making it an optimal estimator 

between the true system state and its estimate, given the available measurements and the system 

model. The filter uses a probabilistic model and the measurements, which allows it to handle 

noise and uncertainty in an efficient and effective way [29][17]. 

There are two sets of equations that are used in the Kalman filter, represented in Table 1. 

 



Hameedah Sahib Hasan et al. Mobile Robot using.......                     511 

Table 1   Kalman filter equations 
Time update (predictor) equations The aforementioned equations play an essential role in projecting the 

current state, and error covariance is estimations forward in time. This 

projection enables the derivation of a priori estimations for the 

subsequent time step. 

Measurement update (corrector) 

equations 

These equations are crucial for the feedback process within the 

Kalman Filter algorithm. They enable the a priori estimate to include 

a new measurement, which enhances the a posteriori estimate. 

 

The estimation process begins by initially estimating the state of the system at a certain time. 

Subsequently, feedback is obtained in the form of measurements. 

2.2  Kalman Filter Modelling 

Kalman filter is a mathematical process that estimates and forecasts a system's state across time 

in the presence of noise and uncertainty. The process is divided into two independent stages: 

the prediction stage computes the state variables and their current uncertainty, and the update 

phase modifies the computations based on fresh measurement data. The efficacy of this filter is 

recognized in several tracking and data prediction applications, with navigation, robotics, and 

signal processing 

The Kalman filter is based on the theoretical model that assumes a linear dynamic system with 

Gaussian noise by using Matlab. It uses pre-existing knowledge of the system to make 

predictions about a process's state as time progresses. The Kalman filter's efficacy is determined 

by its precision; if the model accurately represents the real-world system, the filter achieves the 

most accurate state estimation. Developing appropriate linear models for Kalman filters is 

essential when utilizing sensor data in different applications. 

Figure 2 depicts a Simulink program illustrating the utilization of the Kalman filter in 

conjunction with sensor readings. The input data is obtained from the sensor's measurements, 

and subsequently, the Kalman filter is employed to effectively filter out noise from both the x 

and y values.  

 

 
Figure 2     Kalman filter by using sensor’s data in Simulink 

 

3. Results and discussions 

 

When you use a Kalman filter in Simulink, the results and discussion are usually about how 

well the filter guesses the states of a state-space model given data on the process and 

measurement noise. The Kalman Filter in a Simulink model can visually illustrate its feedback 

mechanism, assisting users in understanding the recognition of measured and unmeasured states 

based on process input. We can compare the estimated and actual states to assess the filter's 

performance in real-time applications. 
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Figure 3 displays graphs illustrating the estimated values for the x and y coordinates, 

respectively. The blue line represents the sensor's data, while the red line represents the 

estimated values obtained through the utilization of the Kalman filter. 

 

 
Figure 3    Kalman filter by using sensor’s data for x 

 

 
Figure 4    Kalman filter by using sensor’s data for y 

 

Figure 5 depicts the utilization of a low-pass filter (LPF) in conjunction with the Kalman filter 

in the experimental setup. The LPF is configured with a frequency of 10 and a time delay of 

0.001s. In the graphs, the blue line represents the raw sensor data collected during the work. 

The red line illustrates the estimated data obtained through the combined implementation of the 

Kalman filter and LPF. Subsequently, the estimated data for the x-axis undergoes another round 

of noise removal using the Kalman filter. Finally, the filtered data for both the x and y axes is 

passed through the LPF again. Figure 5(b) specifically demonstrates this process for the y-axis. 
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(a ) 

 
(b ) 

Figure 5    Kalman filter by using sensor’s data  (a (x ), (b) ( y)) 

Figure 6 shows the relation between the actual and estimated values, which is used to 

illustrate the error through the Kalman filter. 

 

 
Figure 6    Relation between the actual and estimated values 
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3.1 Limitation of Kalman Filter Algorithm 

In this study, various design methods for Kalman filters with uncertainties were examined. 

Furthermore, three cases. were observed where Kalman filters exhibit limitations in their 

performance. 

 

Table 2   Kalman filter cases 
Poor Observability In cases where the process is poorly observable, it is recommended to 

consider changing the sensors or adding new sensors to improve the 

observability of the system. 

Numerical Instability An important observation is that in certain situations, the covariance 

matrices used in the Kalman filter may become asymmetric, which can 

potentially lead to divergence in the recursive computation. 

Blind Spot It is observed, when the process noise and measurement noise 

covariance matrices are considered to be very small, the state estimation 

error-covariance rapidly decreases. 

 

3.2 Advantage of Kalman filter 

The Kalman filter is commonly used in a wide range of applications, such as aerospace, control 

systems, and robotics[30][31][32]. However, such explanations tend to overlook the fact 

that there are some advantages to using a Kalman filter, as shown in Table 3: 

 

Table 3    Advantage of Kalman filter 
Optimal Estimation The Kalman filter algorithm strives to provide the best possible estimate of the 

system's state based on the available data. 

Dynamic Estimation The suitability of the Kalman filter for real-time applications is indeed one of its 

significant advantages. 

Handles Noise One of the strengths of the Kalman filter is its ability to handle measurement errors 

and uncertainties effectively. 

Real-Time Tracking: The Kalman filter is well-suited for applications that require continuous 

monitoring and tracking of the system's state. 

Adaptable Can be used to estimate both linear and nonlinear systems. 

Efficient The Kalman filter is known for its computational efficiency, making it suitable for 

applications where computational resources are limited. 

Versatility: The Kalman filter has found wide applications in various industries, including 

robotics, autonomous vehicles, aerospace, and many others. 

 

To conclude, the Kalman filter is a powerful and versatile tool for state estimation and 

prediction in the presence of noise and uncertainty. It assists in providing a robust framework 

for the combining measurements of a system's state and predicting it accurately and efficiently. 
 

4. Conclusion  

 

The Kalman filter is comprehensively applied in the numerous fields, for example engineering, 

robotics, and finance, for guessing and forecasting the state of systems that include unclear or 

noisy measurements. In this study, the data gained from sensors is handled using the Kalman 

filter to make forecasts and rectify any mistakes in the sensor readings. The aim of this research 

is to enhance the localization method of a mobile robot via the execution of the Kalman filter. 

By integrating the Kalman filter into the localization system, the precision and consistency of 

the robot's position can be improved.  The outcomes of using the Kalman Filter for localization 

in the mobile robots advise that their execution significantly develops the precision of situation 

guesses in the noise and uncertainty in the sensor readings. Researchers have exposed that using 

the Kalman filter in simulation situations like Simulink enhances navigation performance for 

mobile robots, mainly in complex environments. The technology efficiently incorporates data 

from the numerous sensors, offering a methodical technique for the robot localization error 
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reduction and real-time correction. In addition, the Kalman filter enhances localization 

precision and improves more reliable autonomous mobile robots capable of steering in 

challenging situations. Future work will look into further refinements of filter parameters and 

examine other filtering approaches to enhance the localization performance more. 
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